17.12.2012 Views

elements in mushrooms-24415-en 2011.pdf - JRC Publications ...

elements in mushrooms-24415-en 2011.pdf - JRC Publications ...

elements in mushrooms-24415-en 2011.pdf - JRC Publications ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> Ascomycetes and Basidiomycetes<br />

The refer<strong>en</strong>ce <strong>mushrooms</strong> as <strong>in</strong>strum<strong>en</strong>ts for <strong>in</strong>vestigat<strong>in</strong>g<br />

bio<strong>in</strong>dication and biodiversity<br />

Roberto C<strong>en</strong>ci, Luigi Cocchi, Orlando Petr<strong>in</strong>i,<br />

Fabrizio S<strong>en</strong>a, Carm<strong>in</strong>e S<strong>in</strong>iscalco, Luciano Vescovi<br />

Editors: R. M. C<strong>en</strong>ci and F. S<strong>en</strong>a<br />

EUR <strong>24415</strong> EN 2011<br />

1


The mission of the <strong>JRC</strong>-IES is to provide sci<strong>en</strong>tific-technical support to the European Union’s policies<br />

for the protection and susta<strong>in</strong>able developm<strong>en</strong>t of the European and global <strong>en</strong>vironm<strong>en</strong>t.<br />

European Commission<br />

Jo<strong>in</strong>t Research C<strong>en</strong>tre<br />

Institute for Environm<strong>en</strong>t and Susta<strong>in</strong>ability<br />

Via E.Fermi, 2749 I-21027 Ispra (VA) Italy<br />

Legal Notice<br />

Neither the European Commission nor any person act<strong>in</strong>g on behalf of the<br />

Commission is responsible for the use which might be made of this publication.<br />

2<br />

Europe Direct is a service to help you f<strong>in</strong>d answers<br />

to your questions about the European Union<br />

Freephone number (*):<br />

00 800 6 7 8 9 10 11<br />

(*) Certa<strong>in</strong> mobile telephone operators do not allow access to 00 800 numbers or these<br />

calls may be billed.<br />

A great deal of additional <strong>in</strong>formation on the European Union is available on the Internet.<br />

It can be accessed through the Europa server http://europa.eu/<br />

<strong>JRC</strong> Catalogue number: LB-NA-<strong>24415</strong>-EN-C<br />

Editors: R. M. C<strong>en</strong>ci and F. S<strong>en</strong>a<br />

<strong>JRC</strong>65050<br />

EUR <strong>24415</strong> EN<br />

ISBN 978-92-79-20395-4<br />

ISSN 1018-5593<br />

doi:10.2788/22228<br />

Luxembourg: <strong>Publications</strong> Office of the European Union<br />

Translation: Dr. Luca Umidi<br />

© European Union, 2011<br />

Reproduction is authorised provided the source is acknowledged<br />

Pr<strong>in</strong>ted <strong>in</strong> Italy


Attached to this docum<strong>en</strong>t is a CD conta<strong>in</strong><strong>in</strong>g:<br />

• A PDF copy of this docum<strong>en</strong>t<br />

• Information regard<strong>in</strong>g the soil and mushroom sampl<strong>in</strong>g site<br />

locations<br />

• Analytical data (ca, 300,000) on total samples of soils and<br />

<strong>mushrooms</strong> analysed (ca, 10,000)<br />

• The descriptive statistics for all g<strong>en</strong>era and species analysed<br />

• Maps show<strong>in</strong>g the distribution of conc<strong>en</strong>trations of <strong>in</strong>organic<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> <strong>mushrooms</strong><br />

• Maps show<strong>in</strong>g the distribution of conc<strong>en</strong>trations of <strong>in</strong>organic<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> soils<br />

3


4<br />

Contact <strong>in</strong>formation:<br />

Address: Roberto M. C<strong>en</strong>ci - European Commission - DG <strong>JRC</strong> Institute for Environm<strong>en</strong>t and<br />

Susta<strong>in</strong>ability, Land Managem<strong>en</strong>t and Natural Hazards Unit, T.P. 280, I-21027 Ispra (VA),<br />

Italy<br />

E-mail: roberto.c<strong>en</strong>ci@jrc.ec.europa.eu<br />

Tel: +39 0332 789771<br />

Fax: +39 0332 786394<br />

http://eusoils.jrc.it/<strong>in</strong>dex.html<br />

Address: Luigi Cocchi – Member of the National Steer<strong>in</strong>g Group, the Organisational Office of the<br />

National Sci<strong>en</strong>tific Committee and of the Commission of Mycotoxicology belong<strong>in</strong>g to the<br />

Bresadola mycological Association. Vice Presid<strong>en</strong>t of the “R<strong>en</strong>zo Franchi” mycologicalnaturalist<br />

group <strong>in</strong> Reggio Emilia, Italy.<br />

E-mail: luigi.cocchi@libero.it<br />

Address: Orlando Petr<strong>in</strong>i – Istituto Cantonale di Microbiologia, via Mirasole, 22A, CH-6500<br />

Bell<strong>in</strong>zona, Republic and Canton of Tic<strong>in</strong>o, Switzerland<br />

E-mail: orlando.petr<strong>in</strong>i@ti.ch<br />

Tel: +41 91 814 6031<br />

Fax: +41 91 814 6019<br />

http://www.ti.ch/dss/DSP/ISTCM/<br />

Address: Fabrizio S<strong>en</strong>a - European Commission - DG <strong>JRC</strong> Institute for Environm<strong>en</strong>t and<br />

Susta<strong>in</strong>ability, Rural, Water and Ecosystem Resources Unit, T.P. 270, I-21027 Ispra (VA),<br />

Italy<br />

E-mail: fabrizio.s<strong>en</strong>a@jrc.ec.europa.eu<br />

Tel: +39 0332 785399<br />

Fax: +39 0332 786645<br />

http://ies.jrc.ec.europa.eu/rural-water-and-ecosystem-resources-unit<br />

http://www.jrc.ec.europa.eu/<br />

http://ies.jrc.ec.europa.eu/<br />

Address: Carm<strong>in</strong>e S<strong>in</strong>iscalco - Istituto Superiore per la Protezione e la Ricerca Ambi<strong>en</strong>tale (ISPRA),<br />

Dipartim<strong>en</strong>to Difesa della Natura, “Progetto Speciale Funghi”, via Curtatone, 3, I-00185<br />

Roma, Italy<br />

E-mail: carm<strong>in</strong>e.s<strong>in</strong>iscalco@isprambi<strong>en</strong>te.it<br />

Tel: +39 06 5007 4302<br />

Fax: +39 06 5007 4013<br />

http://www.isprambi<strong>en</strong>te.it<br />

Address: Luciano Vescovi – Technician at Enia S.p.A. Laboratories, Reggio Emilia, Italy<br />

E-mail: luciano.vescovi@<strong>en</strong>iaspa.it


Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> Ascomycetes and Basidiomycetes<br />

The refer<strong>en</strong>ce <strong>mushrooms</strong> as an <strong>in</strong>strum<strong>en</strong>t<br />

for <strong>in</strong>vestigat<strong>in</strong>g bio<strong>in</strong>dication and biodiversity<br />

Fungi <strong>in</strong> the wild are among the pr<strong>in</strong>cipal<br />

ag<strong>en</strong>ts <strong>in</strong> biogeochemical cycles; those<br />

cycles of matter and <strong>en</strong>ergy that <strong>en</strong>able<br />

ecosystems to work.<br />

By <strong>in</strong>vestigat<strong>in</strong>g the biodiversity of Italian<br />

fungal species and conc<strong>en</strong>tration levels of<br />

chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> them, it may be<br />

possible to use these fungi as biological<br />

<strong>in</strong>dicators for the quality of forest, woodland<br />

and semi-natural <strong>en</strong>vironm<strong>en</strong>ts.<br />

The database of this EUR Report record the<br />

dry-material conc<strong>en</strong>trations of 35 chemical<br />

<strong>elem<strong>en</strong>ts</strong>, <strong>in</strong>clud<strong>in</strong>g heavy metals, <strong>in</strong> over<br />

9,000 samples of higher <strong>mushrooms</strong><br />

(Ascomycetes and Basidiomycetes). These<br />

samples repres<strong>en</strong>t approximately 200<br />

g<strong>en</strong>era and a thousand species. As the<br />

database has atta<strong>in</strong>ed statistical stability it<br />

has be<strong>en</strong> possible to def<strong>in</strong>e the concept of a<br />

“refer<strong>en</strong>ce mushroom”. The use of a<br />

“refer<strong>en</strong>ce mushroom” may b<strong>en</strong>efit –<br />

perhaps only as a methodological approach<br />

– various fields of mycological and<br />

R. M. C<strong>en</strong>ci, L. Cocchi, O. Petr<strong>in</strong>i,<br />

F. S<strong>en</strong>a, C. S<strong>in</strong>iscalco e L. Vescovi<br />

<strong>en</strong>vironm<strong>en</strong>tal research; from biodiversity<br />

and bio<strong>in</strong>dication, through taxonomy right up<br />

to health and sanitation issues.<br />

The sheer volume of the collected data may<br />

prove to be useful as a comparison for data<br />

collected <strong>in</strong> the future; such results would<br />

also allow a better and more exhaustive<br />

<strong>in</strong>terpretation of the effects of <strong>en</strong>vironm<strong>en</strong>tal<br />

protection laws that have be<strong>en</strong> <strong>in</strong> place over<br />

the years to reduce or remedy curr<strong>en</strong>t<br />

climate change ph<strong>en</strong>om<strong>en</strong>a and the<br />

<strong>en</strong>vironm<strong>en</strong>tal damage caused by human<br />

activity.<br />

Studies perta<strong>in</strong><strong>in</strong>g to the frequ<strong>en</strong>cy of<br />

occurr<strong>en</strong>ce and the ecology of the various<br />

fungal species found on Italian soil have<br />

t<strong>en</strong>ded to l<strong>in</strong>k the refer<strong>en</strong>ce habitats used to<br />

European classification guidel<strong>in</strong>es (Natura<br />

2000, CORINE Land Cover, CORINE<br />

Biotopes and EUNIS). Thereby the<br />

foundations have be<strong>en</strong> laid for the use of<br />

<strong>mushrooms</strong> as biological <strong>in</strong>dicators for the<br />

measurem<strong>en</strong>t of soil and ecosystem quality.<br />

5


6<br />

Thanks<br />

The follow<strong>in</strong>g people contributed to the creation of this docum<strong>en</strong>t:<br />

DR. ANNA BENEDETTI (Paragraph 2.4)<br />

Consiglio per la Ricerca e la sperim<strong>en</strong>tazione <strong>in</strong> Agricoltura - C<strong>en</strong>tro per lo Studio delle<br />

Relazioni tra Pianta e Suolo [Advisory board for Research and Experim<strong>en</strong>tation <strong>in</strong> Agriculture –<br />

C<strong>en</strong>tre for the study of plant-soil relationships]<br />

(anna.b<strong>en</strong>edetti@<strong>en</strong>tecra.it)<br />

DR. PIETRO MASSIMILIANO BIANCO (Paragraph 2.3)<br />

Istituto Superiore per la Protezione e la Ricerca Ambi<strong>en</strong>tale - Dipartim<strong>en</strong>to Difesa della Natura<br />

[Superior Institute for Environm<strong>en</strong>tal Protection and Research – Nature Protection Departm<strong>en</strong>t]<br />

(pietro.bianco@isprambi<strong>en</strong>te.it)<br />

PROF. MANUELA GIOVANNETTI (Paragraph 2.2)<br />

Dipartim<strong>en</strong>to di Biologia delle Piante Agrarie - Università di Pisa<br />

[Departm<strong>en</strong>t of Agrarian Plant Biology – University of Pisa]<br />

(mgiova@agr.unipi.it)<br />

DR. CARLO JACOMINI (Paragraphs 2.3 and 2.4)<br />

Istituto Superiore per la Protezione e la Ricerca Ambi<strong>en</strong>tale - Dipartim<strong>en</strong>to Difesa della Natura<br />

[Superior Institute for Environm<strong>en</strong>tal Protection and Research – Nature Protection Departm<strong>en</strong>t]<br />

(carlo.jacom<strong>in</strong>i@isprambi<strong>en</strong>te.it)<br />

DR. STEFANO MOCALI (Paragraph 2.4)<br />

Consiglio per la Ricerca e la sperim<strong>en</strong>tazione <strong>in</strong> Agricoltura - C<strong>en</strong>tro per lo Studio delle<br />

Relazioni tra Pianta e Suolo [Advisory board for Research and Experim<strong>en</strong>tation <strong>in</strong> Agriculture –<br />

C<strong>en</strong>tre for the study of plant-soil relationships]<br />

(stefano.mocali@<strong>en</strong>tecra.it)<br />

DR. LILIANE PETRINI (Paragraphs 2.1, 2.5 and 3.1)<br />

Lugano (CH)<br />

The creation of such broad and complex books always requires specific, detailed and thorough<br />

<strong>in</strong>formation that can only come from experts. We would like to thank everyone who helped us with<br />

their valuable contributions, without which this work would not have be<strong>en</strong> possible, and <strong>in</strong> particular:<br />

DR. FAYÇAL BOURAOUI<br />

Comunità Europea - C<strong>en</strong>tro Comune di Ricerca di Ispra - Istituto dell’Ambi<strong>en</strong>te e Sost<strong>en</strong>ibilità<br />

[European Community – Ispra Communal Research C<strong>en</strong>tre – Environm<strong>en</strong>t and Susta<strong>in</strong>ability<br />

Institute]<br />

(faycal.bouraoui@jrc.ec.europa.eu)


DR. NAZARIA MACCHI<br />

Servizio Geologico, Sismico e dei Suoli della Regione Emilia Romagna<br />

[Geological, seismic and soil-<strong>in</strong>formation service of the Emilia Romagna region]<br />

(nmarchi@regione.emila-romagna.it)<br />

PROF. GIUSEPPE RASPA<br />

Dipartim<strong>en</strong>to di Ingegneria Chimica e dei Materiali e Ambi<strong>en</strong>te - Università “Sapi<strong>en</strong>za” di Roma<br />

[Departm<strong>en</strong>t of Chemical Eng<strong>in</strong>eer<strong>in</strong>g and Materials and Environm<strong>en</strong>ts – Sapi<strong>en</strong>za University,<br />

Rome]<br />

(giuseppe.raspa @ uniroma1.it).<br />

We also wish to thank:<br />

Franco BERSAN, Enrico BIZIO, Giorgio BUIZZA, Luca CAMPANA, Emanuele CAMPO, Maurella<br />

CASTOLDI, Maurizio CHIARI, Paolo FRANCHI, Luca GORRERI, Pier Giovanni JAMONI, Angela<br />

LANTIERI, Giorgio MARASCA, Mauro MARCHETTI, Giovanni MONTI, Carlo PAPETTI, Giovanni<br />

ROBICH, Mauro SARNARI, Cesare TUGLIOZZI, Gianfranco VISENTIN, the Gruppo Micologico<br />

dell’Etruria meridionale – AMB, the AMB Archives – CSM, the Società V<strong>en</strong>eziana di Micologia –<br />

AMB, all the mycologists and mycological group participants at the AMB who have submitted their<br />

f<strong>in</strong>d<strong>in</strong>gs to the herbarium at the Natural History Museum of V<strong>en</strong>ice.<br />

A heartfelt thank you goes to members and fri<strong>en</strong>ds who have worked for more than tw<strong>en</strong>ty years, <strong>in</strong><br />

various ways and with differ<strong>en</strong>t skills, on the work pres<strong>en</strong>ted here.. It is therefore fitt<strong>in</strong>g and correct to<br />

offer collective thanks to the Associazione Micologica Bresadola and special thanks also to all<br />

members of the Comitato Sci<strong>en</strong>tifico Nazionale and the Gruppo Micologico e Naturalistico “R.<br />

Franchi” <strong>in</strong> Reggio Emilia.<br />

We thank the Prov<strong>in</strong>ce of Reggio Emilia for the sponsorship and support bestowed <strong>in</strong> 2004 to<br />

research<strong>in</strong>g the “Pres<strong>en</strong>ce of Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> higher <strong>mushrooms</strong>”.<br />

We also wish to thank the follow<strong>in</strong>g people for their help <strong>in</strong> collect<strong>in</strong>g mushroom samples:<br />

Maria Luisa BORRETTINI, Presid<strong>en</strong>t of the GGEV group <strong>in</strong> the Prov<strong>in</strong>ce of Reggio Emilia; Gioacch<strong>in</strong>o<br />

PEDRAZZOLI, ex-Presid<strong>en</strong>t of the Emilia-Romagna WWF and member of the Consiglio Direttivo del<br />

Parco nazionale dell’App<strong>en</strong>n<strong>in</strong>o Tosco-Emiliano; Fabio SIMONAZZI, from the C<strong>en</strong>tro di Informazione<br />

ed Educazione Ambi<strong>en</strong>tale dei Territori Canossani della Val d'Enza; Roberto BARBANTINI, Davide<br />

BOTTAZZI, Tito FABBIANI, Willy REGGIONI and Stefania ZANNINI, ward<strong>en</strong>s of the Regional Park of<br />

Alto App<strong>en</strong>n<strong>in</strong>o Reggiano - Parco del Gigante (the Giants’ Park), an <strong>en</strong>tity closed down <strong>in</strong> 2005<br />

follow<strong>in</strong>g the creation of the Parco nazionale dell'App<strong>en</strong>n<strong>in</strong>o Tosco-Emiliano. We also thank Dr.<br />

Bruno CAVALCHI, ex-Chairman of ARPA (ex PMP) <strong>in</strong> Reggio Emilia and Dr. Roberto SOGNI of<br />

ARPA (ex PMP) <strong>in</strong> Piac<strong>en</strong>za.<br />

A special thank you goes to Tjakko STIJVE (St. Légier La Chiesàz, CH) for critical and constructive<br />

discussions, evaluations and data supplied.<br />

We also wish to thank Mr. Pietro SPAGNI.<br />

7


Index<br />

INDEX ............................................................................................................................................. 9<br />

1 PRESENTATIONS............................................................................................................. 11<br />

1.1 ICM ............................................................................................................................. 11<br />

1.2 AMB............................................................................................................................ 12<br />

1.3 ISPRA.......................................................................................................................... 13<br />

1.4 EU - CCR - IES............................................................................................................ 14<br />

1.5 ENIA ........................................................................................................................... 15<br />

2 INTRODUCTION............................................................................................................... 17<br />

2.1 MUSHROOM TAXONOMY .............................................................................................. 17<br />

2.2 BIOLOGICAL NOTES ON MUSHROOMS ........................................................................... 21<br />

2.3 MUSHROOMS AND ENVIRONMENTS FOR GROWTH......................................................... 25<br />

2.4 MUSHROOMS AS A SOIL-QUALITY BIOINDICATOR......................................................... 35<br />

2.5 THE REFERENCE MUSHROOM........................................................................................ 46<br />

2.6 BIODIVERSITY AND BIOINDICATION: EC AND INTERNATIONAL LEGISLATION............... 53<br />

3 DATA SYNTHESIS............................................................................................................ 55<br />

3.1 CONSIDERATION OF STATISTICS AND THE STATISTICAL METHODS EMPLOYED.............. 55<br />

3.2 APPLIED GEOSTATISTICAL ANALYSIS ........................................................................... 59<br />

4 MATERIALS AND METHODS........................................................................................ 63<br />

4.1 METHODS FOR CHEMICAL ANALYSIS OF SOIL AND MACROMYCETES ............................. 63<br />

4.2 DISTRIBUTION MAP OF ELEMENTS IN SOIL .................................................................... 64<br />

4.3 DISTRIBUTION MAP OF ELEMENTS IN THE MUSHROOMS................................................ 70<br />

4.4 SAMPLING: A DATA SHEET EXAMPLE .......................................................................... 107<br />

5 CONCLUSIONS ............................................................................................................... 111<br />

6 BIBLIOGRAPHY ............................................................................................................. 113<br />

7 APPENDIX........................................................................................................................ 121<br />

9


1.1 ICM<br />

Ev<strong>en</strong> if it is not always appar<strong>en</strong>t, <strong>mushrooms</strong> affect<br />

our daily lives <strong>in</strong> many important ways. They are<br />

<strong>in</strong>disp<strong>en</strong>sible <strong>elem<strong>en</strong>ts</strong> for food production, and yet<br />

many of them, as plant pathog<strong>en</strong>s, cause great<br />

agricultural damage. Others, fortunately only a few<br />

– although their numbers are grow<strong>in</strong>g – are<br />

pathog<strong>en</strong>ic ag<strong>en</strong>ts for animals; <strong>in</strong>clud<strong>in</strong>g man.<br />

Mycorrhizae are symbiotic associations betwe<strong>en</strong><br />

fungi and plants that are important <strong>in</strong> agriculture<br />

and, last but not least, several species of<br />

basidiomycetes are valuable edible <strong>mushrooms</strong>.<br />

Therefore, it is important to know and understand<br />

<strong>mushrooms</strong>, and ev<strong>en</strong> more important to classify<br />

them accurately.<br />

For years the taxonomy of basidiomycetes and<br />

ascomycetes was based almost <strong>en</strong>tirely on<br />

morphological characters; we can see this today <strong>in</strong><br />

the id<strong>en</strong>tification keys still used by amateur and<br />

professional mycologists alike. However,<br />

mycologists were quick to realise that morphology<br />

was not <strong>en</strong>ough to build exhaustive and trustworthy<br />

classifications, especially wh<strong>en</strong> the organisms to be<br />

classified were of simple shape or wh<strong>en</strong> the<br />

morphological features were limited or varied little.<br />

Therefore attempts were made to classify these<br />

organisms not only by their morphology, but also<br />

by their physiological and biochemical<br />

characteristics. Ev<strong>en</strong> at the beg<strong>in</strong>n<strong>in</strong>g of the 20 th<br />

C<strong>en</strong>tury, for example, sta<strong>in</strong><strong>in</strong>g and biochemical<br />

reactions were be<strong>in</strong>g studied <strong>in</strong> bacteriology: these<br />

same properties are now used <strong>in</strong> mycology.<br />

Orlando Petr<strong>in</strong>i<br />

Chapter I<br />

Pres<strong>en</strong>tations<br />

Director of the Istituto Cantonale di Microbiologia, Bell<strong>in</strong>zona, Switzerland<br />

Thus arose the problem of reconcil<strong>in</strong>g<br />

morphological classification with the type of<br />

classification established by g<strong>en</strong>etic and<br />

biochemical methods. In fact, g<strong>en</strong>etic analysis oft<strong>en</strong><br />

leads us <strong>in</strong>to creat<strong>in</strong>g taxonomic schemata which<br />

are not, certa<strong>in</strong>ly at first glance, <strong>en</strong>tirely compatible<br />

with exist<strong>in</strong>g classifications. A trustworthy<br />

classification must take <strong>in</strong>to consideration not just<br />

phylog<strong>en</strong>etic properties (be<strong>in</strong>g connected to the<br />

evolution of organisms over time) and ph<strong>en</strong>otype<br />

(the observable morphology and physiology of an<br />

organism), but also ecological peculiarities. Such<br />

an approach is commonly referred to as “polyphase<br />

taxonomy”.<br />

The work conta<strong>in</strong>ed <strong>in</strong> this book provides a new<br />

and important piece of the puzzle which is the<br />

taxonomy of <strong>mushrooms</strong>. I hope that these data<br />

will be of help to taxonomists <strong>in</strong> complet<strong>in</strong>g their<br />

research and that they might become part of a<br />

taxonomic scheme which will go towards resolv<strong>in</strong>g<br />

the difficult issue of the def<strong>in</strong>ition of taxa. By their<br />

very nature, these data are also relevant from<br />

physiological and ecological viewpo<strong>in</strong>ts. I hope<br />

therefore that this book will also be of service to<br />

physiologists who aim to better understand the<br />

biochemical aspects connected to absorption and<br />

ret<strong>en</strong>tion of chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> <strong>mushrooms</strong>, and<br />

that it will serve the ecologists who are try<strong>in</strong>g to<br />

achieve a complete picture of the biodiversity of<br />

these fasc<strong>in</strong>at<strong>in</strong>g organisms.<br />

11


1.2 AMB<br />

Research <strong>in</strong>to the pres<strong>en</strong>ce of chemical <strong>elem<strong>en</strong>ts</strong>,<br />

<strong>in</strong>clud<strong>in</strong>g heavy metals and radioactive isotopes, <strong>in</strong><br />

higher <strong>mushrooms</strong> began <strong>in</strong> 1986 at the “R<strong>en</strong>zo<br />

Franchi” mycological-naturalist group <strong>in</strong> Reggio<br />

Emilia, Italy and was th<strong>en</strong> tak<strong>en</strong> up by the National<br />

Sci<strong>en</strong>tific Committees of the Bresadola<br />

Mycological Association (AMB). This is not a<br />

mere “historical fact”, but <strong>in</strong>stead attests to an<br />

ess<strong>en</strong>tial aspect of the sc<strong>en</strong>ario: giv<strong>en</strong> the size of<br />

the project and the level of skills it <strong>in</strong>volved, this<br />

research could not have be<strong>en</strong> achieved outside of<br />

the AMB and of its network of associated groups.<br />

One of the most delicate issues here, as <strong>in</strong> all<br />

analogous studies <strong>in</strong>to higher <strong>mushrooms</strong>, is that of<br />

hav<strong>in</strong>g a positive id<strong>en</strong>tification of the fungal<br />

exemplars be<strong>in</strong>g studied and analysed: here<strong>in</strong> lies<br />

the skill and know-how that the AMB provides at a<br />

level which is widely recognised as the gold<br />

standard. We believe this characteristic is<br />

someth<strong>in</strong>g over which we should be highly<br />

protective, <strong>in</strong> a spirit of militant volunteerism,<br />

fuelled by passion, respect and love for nature and<br />

its equilibrium.<br />

Such equilibrium is <strong>in</strong>creas<strong>in</strong>gly necessary for the<br />

future of humank<strong>in</strong>d; understand<strong>in</strong>g it and its<br />

mosaic of differ<strong>en</strong>t pieces, possibly thanks to<br />

collaboration and communication betwe<strong>en</strong> various<br />

sci<strong>en</strong>tific discipl<strong>in</strong>es, is becom<strong>in</strong>g an ess<strong>en</strong>tial task<br />

for all those who hold the future of the planet to<br />

heart.<br />

The piece that we br<strong>in</strong>g to this mosaic is our<br />

knowledge of mycological classification and<br />

taxonomy, a sci<strong>en</strong>ce created by the great naturalists<br />

such as L<strong>in</strong>naeus, and which, <strong>in</strong> Italy, culm<strong>in</strong>ated<br />

with the lofty heights of Giacomo Bresadola.<br />

This knowledge is born of the <strong>in</strong>t<strong>en</strong>se work carried<br />

Luigi Villa<br />

Presid<strong>en</strong>t of the Associazione Micologica Bresadola<br />

12<br />

out by our association, which consists of 130<br />

groups from around the country and over 12,000<br />

members. Our members are <strong>in</strong>volved <strong>in</strong> capillary<br />

networks of activities, which <strong>in</strong>clude research,<br />

<strong>in</strong>formation and education programmes regard<strong>in</strong>g<br />

mycology and the <strong>en</strong>vironm<strong>en</strong>t through hundreds<br />

of local <strong>in</strong>itiatives, rang<strong>in</strong>g from mycology courses<br />

and mycological exhibitions to mycological studies<br />

and <strong>in</strong>vestigations.<br />

The AMB is also an important national and<br />

<strong>in</strong>ternational mycological publisher, with two<br />

magaz<strong>in</strong>es to its name Rivista di Micologia<br />

(Mycology Magaz<strong>in</strong>e) and Pag<strong>in</strong>e di Micologia<br />

(Mycology Pages) and various books that deal with<br />

basic mycology all the way up to highly-specialised<br />

tomes.<br />

Two National Sci<strong>en</strong>tific Committee meet<strong>in</strong>gs are<br />

held each year: one <strong>in</strong> spr<strong>in</strong>g, the other <strong>in</strong> autumn,<br />

and these <strong>in</strong>volve hundreds of mycologists.<br />

The work of the National Sci<strong>en</strong>tific Committee<br />

meet<strong>in</strong>gs is the ma<strong>in</strong> driver of the National<br />

Herbarium, which has now surpassed 10,000 dry<br />

specim<strong>en</strong>s and has rec<strong>en</strong>tly be<strong>en</strong> admitted to the<br />

Index Herbariorum.<br />

The recognition that the publication of this EU<br />

report constitutes for a research project that has<br />

lasted over 20 years is not only thanks to the<br />

authors and their pati<strong>en</strong>ce and dedication, but<br />

should be ext<strong>en</strong>ded to the whole AMB.<br />

The fact that this research has led to fruitful<br />

collaboration with European Community<br />

<strong>in</strong>stitutions, the Italian state, with private<br />

companies and non-EC research <strong>in</strong>stitutes, such as<br />

the Istituto cantonale di Microbiologia, <strong>in</strong><br />

Bell<strong>in</strong>zona, Switzerland has brought the statutory<br />

purposes of the AMB to the highest levels.


1.3 ISPRA<br />

The “Special Mushrooms Project” by the ISPRA’s<br />

“Natural Protection” Departm<strong>en</strong>t promotes and<br />

carries out studies on fungal species and is thereby<br />

well placed <strong>in</strong> the project us<strong>in</strong>g them as <strong>in</strong>dicators<br />

of <strong>en</strong>vironm<strong>en</strong>tal quality.<br />

Mushrooms are important diversity <strong>in</strong>dicators <strong>in</strong><br />

terms of population richness and abundance at a<br />

g<strong>en</strong>etic level and can therefore be used <strong>in</strong> the study<br />

and monitor<strong>in</strong>g of biodiversity <strong>in</strong> a particular<br />

<strong>en</strong>vironm<strong>en</strong>t or ecosystem.<br />

One of the 16 research themes <strong>in</strong> the “Special<br />

Mushrooms Project” was aimed at develop<strong>in</strong>g an<br />

IT system for micotoxicological aspects, <strong>in</strong>clud<strong>in</strong>g<br />

ph<strong>en</strong>om<strong>en</strong>a of bioaccumulation and<br />

bioconc<strong>en</strong>tration of heavy metals and x<strong>en</strong>obiotic<br />

substances <strong>in</strong> the <strong>mushrooms</strong>. The idea beh<strong>in</strong>d this<br />

was to facilitate bioremediation plans for degraded<br />

<strong>en</strong>vironm<strong>en</strong>ts and also to promote studies regard<strong>in</strong>g<br />

the health and hygi<strong>en</strong>e aspects related to the human<br />

consumption of <strong>mushrooms</strong>.<br />

The work described <strong>in</strong> this volume, edited by <strong>JRC</strong>-<br />

IES, is the fruit of collaborations betwe<strong>en</strong> five<br />

differ<strong>en</strong>t <strong>in</strong>stitutions that have together be<strong>en</strong> able to<br />

create one of the first ever applications for<br />

bio<strong>in</strong>dication us<strong>in</strong>g <strong>mushrooms</strong>.<br />

The work spr<strong>in</strong>gs from the results of an <strong>in</strong>t<strong>en</strong>se<br />

sampl<strong>in</strong>g campaign carried out <strong>in</strong> Italy by the<br />

Andrea Todisco<br />

Direttore Dipartim<strong>en</strong>to Difesa della Natura di ISPRA, Roma, Italia<br />

Associazione Micologica Bresadola which was<br />

started over 20 years ago and has conducted<br />

chemical analysis on over 9,000 mushroom<br />

samples and which has led through statistical<br />

<strong>in</strong>fer<strong>en</strong>ce to the def<strong>in</strong>ition of a “refer<strong>en</strong>ce<br />

mushroom”. These last two aspects will go on to<br />

play a fundam<strong>en</strong>tal role wh<strong>en</strong> the fungal diversity<br />

<strong>in</strong>dicators for richness and abundance at the g<strong>en</strong>etic<br />

level are def<strong>in</strong>ed. By l<strong>in</strong>k<strong>in</strong>g fungal species to<br />

habitats it will, <strong>in</strong> fact, be possible to use<br />

<strong>mushrooms</strong> to study and monitor the biodiversity<br />

of an ecosystem or <strong>en</strong>vironm<strong>en</strong>t with numerous<br />

<strong>elem<strong>en</strong>ts</strong> of evaluation. Those species occurr<strong>in</strong>g<br />

more frequ<strong>en</strong>tly will act as the first sample of<br />

ecological value and as <strong>en</strong>vironm<strong>en</strong>tal quality<br />

<strong>in</strong>dicators.<br />

In the near future th<strong>en</strong>, we will have a deeper<br />

understand<strong>in</strong>g of both those mechanisms which<br />

ma<strong>in</strong>ta<strong>in</strong> and regulate the evolution of ecosystems<br />

and a new knowledge of those mycotoxicological<br />

aspects which will be used to <strong>in</strong>form protective<br />

legislation regard<strong>in</strong>g human mushroom<br />

consumption.<br />

13


1.4 CCR - IES<br />

It was a great pleasure to be asked to write a small<br />

preface to the volume edited by Roberto C<strong>en</strong>ci,<br />

Fabrizio S<strong>en</strong>a and colleagues. Through this work<br />

there flows a clear love for the <strong>en</strong>vironm<strong>en</strong>t and a<br />

strongly-motivated sci<strong>en</strong>tific <strong>in</strong>terest <strong>in</strong> a littleunderstood<br />

or studied field: <strong>mushrooms</strong>.<br />

The study of soil ecology and, more specifically,<br />

the use of <strong>mushrooms</strong> to evaluate the health of the<br />

soils <strong>in</strong> which they grow would, on the face of it,<br />

be a complex affair; both due to the limited<br />

knowledge we have about the field today and also<br />

to the objective difficulties pres<strong>en</strong>ted by the<br />

formulation of a model by which we might “read”<br />

the soil. The book is a complete and exhaustive<br />

illustration of the characteristics of <strong>mushrooms</strong> and<br />

their role <strong>in</strong> the soil compartm<strong>en</strong>t. At the same time<br />

it lays out a solid base for the use of biodiversity<br />

and bio<strong>in</strong>dication as diagnostic measures to better<br />

understand the health and quality of soil.<br />

The impressive amount of detail giv<strong>en</strong> to trace<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> over 9,000 analyzed mushroom<br />

samples makes this book as a guide that covers<br />

many other fields, such as food and nutrition. We<br />

should bear <strong>in</strong> m<strong>in</strong>d that fungi are used <strong>in</strong> many<br />

differ<strong>en</strong>t foodstuffs, and so knowledge of heavy-<br />

Le<strong>en</strong> Hordijk<br />

Direttore dell’Istituto dell’Ambi<strong>en</strong>te e della Sost<strong>en</strong>ibilità, Ispra, Italia<br />

14<br />

metal pres<strong>en</strong>ce <strong>in</strong> certa<strong>in</strong> types would allow the<br />

creation of healthier products for the consumer.<br />

The data collected here may aid the future<br />

formulation of EC food guidel<strong>in</strong>es. The database<br />

has already be<strong>en</strong> bought by the Italian Health<br />

M<strong>in</strong>istry (its acquisition tak<strong>in</strong>g place <strong>in</strong> 2008) for<br />

use <strong>in</strong> debat<strong>in</strong>g and def<strong>in</strong><strong>in</strong>g Community<br />

Regulation n. 628/2008. Another important aspect<br />

of this work is the vast sampl<strong>in</strong>g area covered and<br />

the high number of fungal species id<strong>en</strong>tified. These<br />

today are of fundam<strong>en</strong>tal importance but will be<br />

ev<strong>en</strong> more important <strong>in</strong> the future wh<strong>en</strong> further<br />

sampl<strong>in</strong>g campaigns will be carried out: at that<br />

stage we shall have a clear view of whether, and to<br />

what ext<strong>en</strong>t, the activities of man and climatic<br />

change <strong>in</strong>flu<strong>en</strong>ce the biodiversity of <strong>mushrooms</strong>.<br />

One f<strong>in</strong>al, but by no means unimportant effect of<br />

this book relates to the use of the <strong>in</strong>formation it<br />

conta<strong>in</strong>s as a database for the numerous experts <strong>in</strong><br />

the field who will now be able to better describe,<br />

and so improve, their <strong>in</strong>vestigations.<br />

I am sure that this book will be recognised for its<br />

merits and that it will be a great aid and step<br />

forward to both <strong>in</strong>ternational and national experts<br />

and researchers <strong>in</strong> the field of mycology.


1.5 ENIA<br />

We are honoured to be among the list of authors of<br />

this report, which stemmed from the historical<br />

connection betwe<strong>en</strong> the “R<strong>en</strong>zo Franchi”<br />

mycological-naturalist group <strong>in</strong> Reggio Emilia,<br />

Italy and the Bresadola Mycological Association –<br />

Mycological Study C<strong>en</strong>tre, which has previously<br />

se<strong>en</strong> so many fruitful collaborations.<br />

It may, on the face of it, seem rather odd that a<br />

multi-utility company such as ours should be<br />

work<strong>in</strong>g with groups so far away from our daily<br />

activity. In reality, however, the logic that moved<br />

and cont<strong>in</strong>ues to move us is the goal of wid<strong>en</strong><strong>in</strong>g<br />

our vision and forg<strong>in</strong>g bonds with the most<br />

<strong>in</strong>terest<strong>in</strong>g partners <strong>in</strong> the territory so as to favour<br />

an exchange of knowledge to our mutual<br />

advantage. These choices have <strong>en</strong>abled Enia to<br />

establish a new concept of "territorial proximity”<br />

by go<strong>in</strong>g beyond the usual partners one would<br />

expect an <strong>en</strong>ergy and <strong>en</strong>vironm<strong>en</strong>tal services<br />

company to have and <strong>in</strong>stead seek<strong>in</strong>g out differ<strong>en</strong>t,<br />

but like-m<strong>in</strong>ded companions to explore and travel<br />

the road ahead.<br />

As always, <strong>in</strong> this relationship we have giv<strong>en</strong> our<br />

best; above all we have made our professionality<br />

and know-how available, <strong>in</strong> this case those<br />

belong<strong>in</strong>g to our Reggio Emilia Laboratories. This<br />

project repres<strong>en</strong>ts a very positive exchange of<br />

knowledge and also a serious means of support<strong>in</strong>g<br />

Andrea Allodi<br />

Chairman of Enìa Spa, Parma, Italia<br />

research <strong>in</strong>itiatives <strong>in</strong> Italy and it placed Enia<br />

among the authors of an <strong>in</strong>strum<strong>en</strong>t which ext<strong>en</strong>ds<br />

far beyond Italy <strong>in</strong> its uniqu<strong>en</strong>ess.<br />

Allow me th<strong>en</strong> one last thought, not just as<br />

Chairman of a company, but also as a Mycologist –<br />

a passion which allows me to appreciate the<br />

f<strong>in</strong>d<strong>in</strong>gs of this book ev<strong>en</strong> more. Oft<strong>en</strong>, wh<strong>en</strong> one<br />

th<strong>in</strong>ks of the <strong>in</strong>strum<strong>en</strong>ts of <strong>in</strong>novation and<br />

research, habit leads us to th<strong>in</strong>k of modernized<br />

gadgets and sharp, complicated mach<strong>in</strong>es, as cold<br />

as only mach<strong>in</strong>ery can be. However, sometimes we<br />

only have to look around us and nature comes to<br />

the rescue. In this case it is <strong>mushrooms</strong> that we<br />

have to thank; “simple” <strong>mushrooms</strong> – and I ask<br />

mycologists to forgive me this def<strong>in</strong>ition.<br />

These <strong>mushrooms</strong> l<strong>en</strong>d us a help that should make<br />

us reflect upon and reth<strong>in</strong>k our relationship with the<br />

world that surrounds us and of which we are part. It<br />

is a world which we ever more frequ<strong>en</strong>tly know<br />

little about and oft<strong>en</strong> mistreat. We waste, dirty and<br />

ev<strong>en</strong> ru<strong>in</strong> a bounty which should be there for<br />

everybody.<br />

If the research <strong>in</strong> this book sets us to th<strong>in</strong>k<strong>in</strong>g about<br />

this, we will have reached another goal and<br />

provided another significant result which can be<br />

added to the extraord<strong>in</strong>ary value of this Report.<br />

15


2.1 Mushroom taxonomy<br />

2.1.1 Introduction<br />

Mushrooms, as all liv<strong>in</strong>g be<strong>in</strong>gs, are sci<strong>en</strong>tifically<br />

named accord<strong>in</strong>g to their “b<strong>in</strong>omial nom<strong>en</strong>clature”,<br />

which <strong>in</strong>dicates their “g<strong>en</strong>us” (capitalised) and their<br />

“species” (not capitalised); both names are usually<br />

italicised. The b<strong>in</strong>omial d<strong>en</strong>om<strong>in</strong>ation of liv<strong>in</strong>g<br />

creatures, which had previously be<strong>en</strong> partially used<br />

by Theophrastus and Pl<strong>in</strong>y, was giv<strong>en</strong> a sci<strong>en</strong>tific<br />

basis by L<strong>in</strong>naeus, who established “taxonomy”<br />

(based on a b<strong>in</strong>omial d<strong>en</strong>om<strong>in</strong>ation us<strong>in</strong>g Lat<strong>in</strong> or<br />

Lat<strong>in</strong>ised names) as a real and proper sci<strong>en</strong>tific<br />

discipl<strong>in</strong>e. L<strong>in</strong>naeus (L<strong>in</strong>naeus, 1753) described<br />

fungi for the first time, group<strong>in</strong>g them <strong>in</strong>to just t<strong>en</strong><br />

g<strong>en</strong>era. S<strong>in</strong>ce th<strong>en</strong> the taxonomy of <strong>mushrooms</strong> and<br />

fungi has made great leaps forward.<br />

Later on, (1816 - 1817) Nees broad<strong>en</strong>ed and<br />

ref<strong>in</strong>ed L<strong>in</strong>naeus’s work by <strong>en</strong>hanc<strong>in</strong>g taxonomy.<br />

First considered as vegetables and th<strong>en</strong> be<strong>in</strong>g<br />

assigned to the realm of plants, <strong>mushrooms</strong> were<br />

regarded from early on as "abnormal" bodies, the<br />

taxonomic position of which rema<strong>in</strong>ed very<br />

unclear. These organisms attracted the att<strong>en</strong>tion of<br />

biologists, and, after some <strong>in</strong>itial important work <strong>in</strong><br />

Italy, Saccardo’s monum<strong>en</strong>tal efforts (1882-1931)<br />

culm<strong>in</strong>ated <strong>in</strong> a veritable <strong>en</strong>cyclopaedia of<br />

mycology.<br />

Initially, fungi were classified <strong>in</strong>to four divisions.<br />

The Basidiomycetes were dist<strong>in</strong>guished from the<br />

Ascomycetes and from the Deuteromycetes largely<br />

based on morphological characters such as the way<br />

their spores formed, the colour and shape of those<br />

spores and the appearance of their bodies. Clearly,<br />

the most studied fungi were Basidiomycetes;<br />

visible to the naked eye and of <strong>in</strong>terest for their<br />

gastronomic properties and economic value.<br />

Chapter II<br />

Introduction<br />

2.1.2 Classification of fungi <strong>in</strong>to<br />

k<strong>in</strong>gdoms and phyla<br />

Fungi are eukaryotes (therefore hav<strong>in</strong>g a nucleus<br />

delimited by a nuclear membrane). Their cell walls<br />

conta<strong>in</strong> chit<strong>in</strong> and glucans (and rarely cellulose)<br />

and their nucleus may be haploid or diploid,<br />

dikaryon, homokaryon or heterokaryon. The<br />

fructifications can be microscopic or macroscopic,<br />

differ<strong>en</strong>tiated or undiffer<strong>en</strong>tiated. Their ecological<br />

role is very varied and among themselves they may<br />

be symbionts, saprobes, parasites, comm<strong>en</strong>sals or<br />

hyperparasites.<br />

Fungi are fairly cosmopolitan: around 70,000<br />

species have be<strong>en</strong> described, but Hawksworth<br />

(1991) estimates that there may be as many as 1.5<br />

million. Only around 300 are known pathog<strong>en</strong>s for<br />

humans, while many cause plant diseases and a<br />

considerable number play a fundam<strong>en</strong>tal role <strong>in</strong> the<br />

ecosystem, both as destroyers of vegetable detritus<br />

and as symbionts (Mycorrhizae and lich<strong>en</strong>s).<br />

Until 1980, taxonomists considered fungi a<br />

compact, though not necessarily homog<strong>en</strong>ous,<br />

group. Müller and Löffler (1976), <strong>in</strong> their book on<br />

mycology (still considered a classic refer<strong>en</strong>ce for<br />

mycologists) <strong>in</strong>cluded not only the Ascomycetes,<br />

the Basidiomycetes, the Deuteromycetes and<br />

Zygomycetes, but also some groups of organisms<br />

that have s<strong>in</strong>ce be<strong>en</strong> transferred <strong>in</strong>to the k<strong>in</strong>gdoms<br />

of Protista and Chromista. In 1981, Cavalier-Smith<br />

(1981) proposed a separate k<strong>in</strong>gdom for the “higher<br />

<strong>mushrooms</strong>” (the Ascomycetes, Basidiomycetes,<br />

Zygomycetes and their asexual forms, grouped<br />

together as Deuteromycetes) and transferred most<br />

of the “lower fungi” (s<strong>in</strong>gle-celled organisms or<br />

hyphae, oft<strong>en</strong> with flagella spores) <strong>in</strong>to the Protista<br />

and Chromista. Cavalier-Smith’s work, which<br />

showed how <strong>mushrooms</strong> are more similar to<br />

animals than to plants (fig. 1) op<strong>en</strong>ed the door to a<br />

more detailed re-elaboration of the taxonomy and<br />

phylog<strong>en</strong>y of fungi.<br />

K<strong>en</strong>drick (1992) described the ideas of Cavalier-<br />

Smith very well <strong>in</strong> his book, “The Fifth K<strong>in</strong>gdom”.<br />

17


18<br />

Fig. 1. The “Tree of Life”, the position of fungi <strong>in</strong> the phylog<strong>en</strong>ic tree . Source: “Tree of Life Project” (Maddison and Schulz, 2007)<br />

It was the same Cavalier-Smith who, over the<br />

follow<strong>in</strong>g years, proposed ever more complex and<br />

detailed models (Cavalier-Smith, 1993; 1998;<br />

2004; 2006), which were th<strong>en</strong> tak<strong>en</strong> and<br />

formalised, at least as regards the k<strong>in</strong>gdom of<br />

fungi, by Hibbett and B<strong>in</strong>der (2007) (fig. 2).<br />

Curr<strong>en</strong>tly, liv<strong>in</strong>g organisms are divided <strong>in</strong>to sev<strong>en</strong><br />

k<strong>in</strong>gdoms (Eubacteria, Archaebacteria, Archaezoa,<br />

Protozoa, Plantae, Animalia, Fungi). To this list<br />

should be added the k<strong>in</strong>gdom of Chromista, itself<br />

an area of considerable controversy.<br />

Fig. 2. The phylog<strong>en</strong>y and classification of fungi. Source: Hibbett (Hibbett and B<strong>in</strong>der, 2007), am<strong>en</strong>ded. The l<strong>en</strong>gth of the branches of the<br />

cladogram is not proportional to the g<strong>en</strong>etic distance betwe<strong>en</strong> taxa.<br />

Based on the work by Cavalier-Smith (1993) and<br />

Hibbett and B<strong>in</strong>der (2007) fungi, that until 1980<br />

were grouped together <strong>in</strong> one k<strong>in</strong>gdom, are now<br />

subdivided as follows:<br />

• the k<strong>in</strong>gdom of fungi <strong>in</strong>cludes the<br />

Ascomycota and Basidiomycota<br />

(Dikarya), the Glomeromycota (which<br />

<strong>in</strong>cludes the <strong>en</strong>dotrophic mycorrhizae),<br />

the Chytridiomycota, the Neocallimastigomycota,<br />

the "Mucormycot<strong>in</strong>a"


(traditionally Zygomycota), the<br />

Blastocladiomycota, the Entomophthoromycot<strong>in</strong>a,<br />

the Zoopagomycot<strong>in</strong>a, the<br />

Kickxellomycot<strong>in</strong>a and a group of<br />

unicellular human parasites Microsporidia;<br />

• the myxomycetes have be<strong>en</strong> transferred<br />

<strong>in</strong>to the k<strong>in</strong>gdom of Protozoa<br />

(Amoebozoa, Eumycetozoa);<br />

• the Oomycetidae and Thraustochytridae<br />

are now assigned to the k<strong>in</strong>gdom of<br />

Chromista.<br />

This new classification is the result of <strong>in</strong>t<strong>en</strong>sive<br />

phylog<strong>en</strong>ic work, based <strong>in</strong> particular on g<strong>en</strong>etic<br />

analysis, but it is <strong>in</strong>terest<strong>in</strong>g to note that the results<br />

are <strong>in</strong> perfect concordance with previously stated<br />

hypothesis based on observations of morphology<br />

and physiology (Müller et al., 1976).<br />

2.1.3 Problems with taxonomy <strong>in</strong><br />

mycology: fungal variability<br />

With<strong>in</strong> any wide taxon, not only molecular<br />

g<strong>en</strong>etics, but also morphology and physiology are<br />

useful for reach<strong>in</strong>g taxonomic conclusions.<br />

Morphologically speak<strong>in</strong>g, fungi are <strong>in</strong>credibly<br />

variable. Beyond the morphological variations<br />

pres<strong>en</strong>t both at a macroscopic (just th<strong>in</strong>k of the<br />

differ<strong>en</strong>ce betwe<strong>en</strong> porc<strong>in</strong>i <strong>mushrooms</strong> and an<br />

amanita muscaria, for example) and at a<br />

microscopic level, fungi create further difficulties<br />

by their ability to express two dist<strong>in</strong>ct ph<strong>en</strong>otypes<br />

<strong>in</strong> their reproductive and vegetative forms.<br />

Furthermore, oft<strong>en</strong> a fungus will produce just one<br />

form (sexual or vegetative) through hav<strong>in</strong>g reduced<br />

or lost the capacity to reproduce either sexually or<br />

vegetatively (asexually).<br />

Fig 3. Example of a holomorph: Eurotium and its anamorph, Aspergillus.<br />

From a phylog<strong>en</strong>etic po<strong>in</strong>t of view, morphological<br />

analysis can lead to organisms be<strong>in</strong>g erroneously<br />

id<strong>en</strong>tified as belong<strong>in</strong>g to two dist<strong>in</strong>ct taxa wh<strong>en</strong>, <strong>in</strong><br />

reality, there exists only one, either <strong>in</strong> its sexual or<br />

asexual form. Only <strong>in</strong> cases where both forms are<br />

found together can a morphological analysis give a<br />

trustworthy classification; <strong>in</strong> other cases g<strong>en</strong>etic<br />

analysis becomes <strong>in</strong>disp<strong>en</strong>sible.<br />

Mushrooms are pleomorphic and therefore assume<br />

a differ<strong>en</strong>t shape dep<strong>en</strong>d<strong>in</strong>g not only on the type of<br />

reproductive organ they develop, but also on the<br />

<strong>en</strong>vironm<strong>en</strong>tal and physiological conditions<br />

<strong>in</strong>flu<strong>en</strong>c<strong>in</strong>g their growth.<br />

Regard<strong>in</strong>g pleomorphic growth <strong>in</strong> differ<strong>en</strong>t<br />

physiological and ecological conditions, see the<br />

dimorphism of certa<strong>in</strong> bodies (especially animal<br />

pathog<strong>en</strong>s) <strong>in</strong> the form of yeast that grow <strong>in</strong><br />

particular conditions (e.g. Paracoccidioides<br />

brasili<strong>en</strong>sis: yeast at temperatures above 37°C,<br />

hyphae at temperatures below 37°C).<br />

Also important is the pleomorphism of the sexual<br />

and vegetative forms. Over the last years this led<br />

to a reconsideration of nom<strong>en</strong>clature <strong>in</strong> fungi. The<br />

fungus considered as a complete <strong>en</strong>tity, or “the<br />

whole fungus” was named the “holomorph”: this is<br />

the sum of the “anamorph” (from “anatomic<br />

morphology”: the asexual form), and the<br />

“teleomorph”. A holomorph is thus normally<br />

composed of a teleomorph and its anamorphic<br />

form. However, <strong>in</strong> some cases one of the forms will<br />

be unknown and so the holomorph will correspond<br />

either to the teleomorph or the anamorph. Not<br />

<strong>in</strong>frequ<strong>en</strong>tly, a s<strong>in</strong>gle holomorph may have several<br />

diverse anamorphic forms. One typical example of<br />

this is Aspergillus (an anamorphic form) and its<br />

teleomorphic form Eurotium (fig. 3).<br />

19


2.1.4 The phyla of fungi relevant to this<br />

work: Basidiomycota and Ascomycota<br />

Dur<strong>in</strong>g our work we were able to exam<strong>in</strong>e a large<br />

number of samples belong<strong>in</strong>g to the Phylum<br />

Basidiomycota and also many specim<strong>en</strong>s belong<strong>in</strong>g<br />

to the Ascomycota although fewer than those<br />

belong<strong>in</strong>g to the former group.<br />

We have followed the classification proposed by<br />

Hibbett and B<strong>in</strong>der (2007) for higher-level<br />

taxonomy, while <strong>in</strong>side each family we have kept<br />

to the classification used by CAB International<br />

(www.<strong>in</strong>dexfungorum.org). This was not an<br />

“ideological choice” (<strong>in</strong> this period of cont<strong>in</strong>uous<br />

systematic and taxonomic upheaval that is only<br />

partly mitigated by the International Code of<br />

Botanical Nom<strong>en</strong>clature, "marry<strong>in</strong>g" systematics to<br />

taxonomy is, <strong>in</strong>deed, oft<strong>en</strong> arbitrary), but rather an<br />

operative choice – made simply to r<strong>en</strong>der the work<br />

more easily accessible to all.<br />

In any case, the systematics and taxonomy are<br />

proposed while fully tak<strong>in</strong>g <strong>in</strong>to account the results<br />

that cont<strong>in</strong>uously arise from phylog<strong>en</strong>etic analysis.<br />

A greater difficulty from our po<strong>in</strong>t of view was the<br />

lack of a universally-accepted def<strong>in</strong>ition of<br />

“species” <strong>in</strong> mycology. This not only creates<br />

problems wh<strong>en</strong> one is attempt<strong>in</strong>g to attribute a<br />

name to a species, but also means that it is not<br />

20<br />

always easy to be sure that carpophores id<strong>en</strong>tified<br />

by differ<strong>en</strong>t mycologists (or ev<strong>en</strong> by the same<br />

mycologist, but dur<strong>in</strong>g a differ<strong>en</strong>t period) belong to<br />

the same species.<br />

The problem also arises, obviously, wh<strong>en</strong> we want<br />

to compare our data with those of other researchers,<br />

although fortunately for us this was only an issue <strong>in</strong><br />

very few cases and has no bear<strong>in</strong>g on data after the<br />

level of g<strong>en</strong>us. More chall<strong>en</strong>g<strong>in</strong>g (and surely<br />

requir<strong>in</strong>g further study) is the attempt to def<strong>in</strong>e a<br />

species. For consolidated species the difficulties are<br />

only quantitative <strong>in</strong> nature (hav<strong>in</strong>g data on a great<br />

number of samples) but species which are still<br />

be<strong>in</strong>g debated are far more complex and, beyond<br />

quantitative issues, pres<strong>en</strong>t systematic and<br />

taxonomical questions to the resolution of wich our<br />

research may perhaps be able to contribute.<br />

2.1.5 Glossary<br />

Many terms used <strong>in</strong> mycology are <strong>in</strong>terpreted<br />

differ<strong>en</strong>tly by differ<strong>en</strong>t researchers. For def<strong>in</strong>itions<br />

of some of these and <strong>in</strong> particular those concepts<br />

such as classification, phylog<strong>en</strong>y, systematics and<br />

taxonomy, where there are several schools of<br />

thought we list here their simplified def<strong>in</strong>itions.<br />

Haploid Cells that conta<strong>in</strong> just one set of chromosomes (one Ascomycetes Fungi that exog<strong>en</strong>ously produce sexual spores (i.e. those<br />

chromosome of each type)<br />

formed after meiosis) <strong>in</strong> conta<strong>in</strong>ers called asci.<br />

Basidiomycetes Fungi that produce sexual spores (i.e. those formed after Chromista The k<strong>in</strong>gdom that <strong>in</strong>cludes unicellular or multicellular liv<strong>in</strong>g<br />

meiosis) exog<strong>en</strong>ously on their basidia.<br />

organisms called eukaryotes. These are mostly photosynthetic,<br />

but Chromista also <strong>en</strong>compasses organisms previously<br />

classified among the "lower fungi".<br />

Classification Very broad term that d<strong>en</strong>otes an organisational scheme. Comm<strong>en</strong>sal Organisms that live on or <strong>in</strong> other organisms, usually<br />

It is oft<strong>en</strong> the result of a taxonomic scheme,<br />

receiv<strong>in</strong>g some advantage from the relationship (food or<br />

notwithstand<strong>in</strong>g that classification does not necessarily<br />

give names to the organisms classified.<br />

protection) but without damag<strong>in</strong>g the host organism.<br />

Deuteromycetes (a non-taxonomic term) fungi that develop asexual<br />

spores (i.e. formed after mitosis).<br />

Dikaryon A hypha or cell with two nuclei.<br />

Diploid Cells that conta<strong>in</strong> two copies of each chromosome. Heterokaryons A cell conta<strong>in</strong><strong>in</strong>g several g<strong>en</strong>etically differ<strong>en</strong>t nuclei. They are<br />

artificially g<strong>en</strong>erated by the fusion of two or more cells and <strong>in</strong><br />

nature are only found <strong>in</strong> fungi.<br />

Phylog<strong>en</strong>y The hierarchical structure that orders liv<strong>in</strong>g organisms<br />

accord<strong>in</strong>g to their reciprocal evolution.<br />

Hyperparasites A parasite that lives on another parasite.<br />

Lich<strong>en</strong>s Forms of life result<strong>in</strong>g from a comb<strong>in</strong>ation of Mycorrhiza A symbiotic association betwe<strong>en</strong> a fungus and a higher plant,<br />

autotrophic organisms (algae or cyanobacteria, mostly<br />

chlorophyta) and a fungus, usually an ascomycete or<br />

basidiomycete mushroom. They are classified accord<strong>in</strong>g<br />

to the taxonomic position of the fungus.<br />

found <strong>in</strong> the root wall of the vegetable symbiont.<br />

Homokaryon Cells that conta<strong>in</strong> two or more id<strong>en</strong>tical nuclei, usually Parasite An organism that obta<strong>in</strong>s nutrition and/or shelter from another<br />

produced by the fusion of one or more cells of the same<br />

species.<br />

organism without giv<strong>in</strong>g anyth<strong>in</strong>g <strong>in</strong> return.<br />

Pleomorphism A characteristic of <strong>mushrooms</strong> that develop differ<strong>en</strong>t Protist The k<strong>in</strong>gdom <strong>in</strong>clud<strong>in</strong>g unicellular eukaryote organisms,<br />

forms at differ<strong>en</strong>t stages of their lifecycles.<br />

<strong>in</strong>clud<strong>in</strong>g protozoa, algae and fungi.<br />

Saprobic An organism reeceiv<strong>in</strong>g nutrition from non-liv<strong>in</strong>g Symbiosis A close relationship betwe<strong>en</strong> diverse organisms whereby each<br />

organic material.<br />

organism receives a reciprocal b<strong>en</strong>efit. Lich<strong>en</strong>s and<br />

Systematics The process of classify<strong>in</strong>g liv<strong>in</strong>g creatures based on their Taxonomy<br />

Mycorrhizae are examples.<br />

The assegnation of names to organisms. A term frequ<strong>en</strong>tly<br />

phylog<strong>en</strong>etic position.<br />

considered a synonym of systematics.


2.2 Biological notes on<br />

<strong>mushrooms</strong><br />

The word mushroom immediately gives one the<br />

idea of edible <strong>mushrooms</strong>, those we gather from<br />

the woods or we buy straight from the market,<br />

however, <strong>mushrooms</strong> are just one type of fungi<br />

along with many others. Other fungi <strong>in</strong>clude the<br />

moulds that sometimes attack cultivated plants or<br />

the walls of our houses, those that contam<strong>in</strong>ate our<br />

food, produce damag<strong>in</strong>g tox<strong>in</strong>s; or those that are<br />

used <strong>in</strong>dustrially <strong>in</strong> the production of food, dr<strong>in</strong>ks<br />

and pharmaceuticals. Fungi are employed<br />

commercially <strong>in</strong> the production of antibiotics,<br />

steroids, cyclospor<strong>in</strong> and <strong>en</strong>zymes for use <strong>in</strong><br />

cook<strong>in</strong>g and <strong>in</strong> the production of food and dr<strong>in</strong>k.<br />

Just try to imag<strong>in</strong>e a world without fungi: we<br />

would have to say goodbye to w<strong>in</strong>e, beer, bread,<br />

several types of f<strong>in</strong>e cheese, antibiotics and other<br />

therapeutic chemical compounds.<br />

Fungi, as all eukaryotic organisms, possess cells<br />

that conta<strong>in</strong> a nucleus wrapped up <strong>in</strong> a membrane,<br />

more than one chromosome and organelles such as<br />

mitochondria.<br />

They have many unique features <strong>in</strong> terms of their<br />

structure, cellular compon<strong>en</strong>ts and organisation.<br />

They are <strong>in</strong> fact filam<strong>en</strong>tous, multicellular<br />

organisms made up of long, branch<strong>in</strong>g tubular cells<br />

called hyphae which are of vary<strong>in</strong>g l<strong>en</strong>gths, but<br />

uniform diameter, of 2-30 μm, and are together<br />

known as mycelium.<br />

The hyphal walls are composed of polysaccharides<br />

(80-90%), prote<strong>in</strong>s, lipids, polyphosphates and<br />

organic ions, but their ma<strong>in</strong> constitu<strong>en</strong>t is chit<strong>in</strong>, a<br />

polymer of N-acetylglucosam<strong>in</strong>e, which is derived<br />

from glucose (Carlile et al., 2001).<br />

The hyphae grow from the tip; the ext<strong>en</strong>sion zone<br />

may be betwe<strong>en</strong> 30 to 400 micrometres and the<br />

hyphal walls stiff<strong>en</strong> rapidly. The part of the hypha<br />

immediately below the ext<strong>en</strong>sion zone ages<br />

progressively and its oldest parts can either be<br />

lysed by the organism’s own <strong>en</strong>zymes (autolysis)<br />

or by other organisms (heterolysis). Protoplasm<br />

moves cont<strong>in</strong>uously from the old parts of the hypha<br />

towards the tip and so the hyphae cont<strong>in</strong>uously<br />

grow from one <strong>en</strong>d and cont<strong>in</strong>uously age from the<br />

other; all the while the protoplasm shifts along<br />

from the ag<strong>in</strong>g part to the new. The hyphae of most<br />

fungi are divided at regular <strong>in</strong>tervals by transversal<br />

septa, but these are not pres<strong>en</strong>t, for example, <strong>in</strong> the<br />

hyphae of the Glomeromycota, except where they<br />

are used to isolate the hyphae’s own dead or<br />

decay<strong>in</strong>g regions. In any case, the functional<br />

subdivision of fungi <strong>in</strong>to those with septa and those<br />

without is not so clear s<strong>in</strong>ce fungal septa conta<strong>in</strong><br />

pores through which cytoplasm, and <strong>in</strong> some cases<br />

ev<strong>en</strong> nuclei, may pass. Therefore septate hyphae<br />

are composed of <strong>in</strong>terconnect<strong>in</strong>g compartm<strong>en</strong>ts and<br />

function as <strong>in</strong>tegrated units. Inside the hyphae the<br />

cytoplasm and nuclei move and there may be<br />

vary<strong>in</strong>g numbers of them <strong>in</strong> each compartm<strong>en</strong>t<br />

separated by septa, from one to doz<strong>en</strong>s of them,<br />

right up to t<strong>en</strong>s of thousands of them <strong>in</strong> co<strong>en</strong>ocytic<br />

fungi (without septa) (Gregory, 1984) (fig. 4).<br />

Fig. 4. Epifluoresc<strong>en</strong>t photo of the many nuclei pres<strong>en</strong>t <strong>in</strong> the fungal hyphae of a co<strong>en</strong>ocytic fungus, detected by sta<strong>in</strong><strong>in</strong>g with DAPI.<br />

A dist<strong>in</strong>ctive aspect of fungi is the ability of their<br />

hyphae to fuse to form a closely <strong>in</strong>ter-connected<br />

mycelium where the id<strong>en</strong>tities of the <strong>in</strong>dividual<br />

hyphae are lost <strong>in</strong> favour of the shar<strong>in</strong>g of nutri<strong>en</strong>ts<br />

and g<strong>en</strong>etic heritage: a fundam<strong>en</strong>tal characteristic<br />

allow<strong>in</strong>g fungal colonies to resist <strong>en</strong>vironm<strong>en</strong>tal<br />

stresses (Brasier, 1992; Glass et al., 2004) (fig. 5).<br />

21


22<br />

Fig. 5. View of hyphal fusions that give rise to a closely <strong>in</strong>terconnected fungal mycelium.<br />

Fungi can reproduce both sexually and asexually.<br />

Asexual reproduction takes place by mitosis, with<br />

the production of spores that are dispersed <strong>in</strong> the air<br />

and th<strong>en</strong> fall on an appropriate substrate where they<br />

germ<strong>in</strong>ate and the cycle may repeat. Sexual<br />

reproduction <strong>in</strong>stead occurs after the fusion of two<br />

haploid cells, with the creation of one diploid cell.<br />

After meiosis and subsequ<strong>en</strong>t mitosis this cell<br />

develops s<strong>in</strong>gle spores. In the Ascomycetes, these<br />

are formed <strong>in</strong>side closed receptacles called asci and<br />

are known as ascospores. In the Basidiomycetes<br />

they are found externally on structures called<br />

basidia and are called basidiospores (Carlile et al.,<br />

2001).<br />

Fungi are chemoheterotrophic organisms and<br />

therefore need a source of organic nutri<strong>en</strong>ts from<br />

which to draw <strong>en</strong>ergy for their cellular metabolism.<br />

Giv<strong>en</strong> a simple <strong>en</strong>ergy source, such as glucose,<br />

many fungi can th<strong>en</strong> absorb all the other cellular<br />

compon<strong>en</strong>ts they need from <strong>in</strong>organic sources<br />

(ammonia or nitrate, phosphate and other m<strong>in</strong>erals<br />

such as calcium, potassium, magnesium and iron).<br />

Their cell walls are composed of complex<br />

polysaccharides, such as chit<strong>in</strong>, and fungi can<br />

absorb simple soluble nutri<strong>en</strong>ts through their cell<br />

walls and membranes.<br />

Thanks to their ability to produce extracellular<br />

<strong>en</strong>zymes, they can break down complex polymers<br />

such as cellulose and lign<strong>in</strong> so as to th<strong>en</strong> reabsorb<br />

the simple sugars rema<strong>in</strong><strong>in</strong>g. Fungi produce a wide<br />

range of <strong>en</strong>zymes that can degrade the most varied<br />

and recalcitrant polymers such as lign<strong>in</strong> (Carlile et<br />

al., 2001).<br />

Yeasts also belong to the k<strong>in</strong>gdom of fungi; these<br />

are; mostly-unicellular organisms with globose or<br />

oval cells that measure 6-12 micrometres <strong>in</strong><br />

diameter.<br />

Yeasts may reproduce through budd<strong>in</strong>g, division or<br />

sexually by formation of asci or basidia and live <strong>in</strong><br />

sugar-rich <strong>en</strong>vironm<strong>en</strong>ts. The species most<br />

commonly used <strong>in</strong> the <strong>in</strong>dustrial ferm<strong>en</strong>tation<br />

process is Saccharomyces cerevisiae, the “brewer’s<br />

yeast”. Each <strong>in</strong>dustry will have its own selected<br />

stra<strong>in</strong>s, which are treated as g<strong>en</strong>u<strong>in</strong>e <strong>in</strong>dustrial<br />

secrets <strong>in</strong> the production of w<strong>in</strong>e, beer, cider and<br />

bread.<br />

Wh<strong>en</strong> yeasts reproduce asexually through the<br />

production of buds on the cell surface, each bud<br />

will grow until it reaches the same dim<strong>en</strong>sions as<br />

the mother cell. At this stage the new cell will<br />

detach itself, leav<strong>in</strong>g a scar that will be covered<br />

with chit<strong>in</strong>. S<strong>in</strong>ce chit<strong>in</strong> (the pr<strong>in</strong>cipal constitu<strong>en</strong>t<br />

of <strong>in</strong>sects’ and crustaceans’ exoskeletons) is a<br />

polysaccharide with a rigid consist<strong>en</strong>cy. new buds<br />

cannot form at these chit<strong>in</strong>-covered scars and as a<br />

consequ<strong>en</strong>ce, the mother cell, upon hav<strong>in</strong>g<br />

produced as many budsto cover her whole surface<br />

with chit<strong>in</strong>, dies.<br />

Yeasts have a special metabolism that allows them<br />

to exist <strong>in</strong> the pres<strong>en</strong>ce of oxyg<strong>en</strong>, by breath<strong>in</strong>g,<br />

and also <strong>in</strong> oxyg<strong>en</strong>’s abs<strong>en</strong>ce, by ferm<strong>en</strong>t<strong>in</strong>g<br />

(Carlile et al., 2001).


Fungi are an important compon<strong>en</strong>t of the<br />

ecosystem, <strong>in</strong>strum<strong>en</strong>tal <strong>in</strong> the cont<strong>in</strong>uation of<br />

biogeochemical cycles and repres<strong>en</strong>t the ma<strong>in</strong><br />

ag<strong>en</strong>ts <strong>in</strong> the decomposition of organic matter<br />

conta<strong>in</strong><strong>in</strong>g carbon, nitrog<strong>en</strong>, sulphur and<br />

phosphorus <strong>in</strong>to m<strong>in</strong>eral compounds that can be<br />

used aga<strong>in</strong> by plants.<br />

In terms of the carbon cycle, the ma<strong>in</strong> compon<strong>en</strong>ts<br />

of organic matter to be decomposed are cellulose,<br />

hemicellulose and lign<strong>in</strong>, which make up around<br />

70% of all material <strong>in</strong> plant cell walls. Fungi can<br />

completely break down cellulose by produc<strong>in</strong>g<br />

three pr<strong>in</strong>cipal <strong>en</strong>zymes: Endocellulase, which acts<br />

randomly <strong>in</strong>side the cha<strong>in</strong> of cellulose, break<strong>in</strong>g up<br />

the molecules <strong>in</strong>to smaller fragm<strong>en</strong>ts; Exocellulase,<br />

which only acts at the <strong>en</strong>ds of the cellulose cha<strong>in</strong>s,<br />

releas<strong>in</strong>g cellobiose units; and the third <strong>en</strong>zyme;<br />

cellobiase, which breaks the disaccharide<br />

cellobiose <strong>in</strong>to two molecules of glucose that can<br />

be absorbed by the fungus.<br />

The three <strong>en</strong>zymes act synergistically and are<br />

carefully regulated to <strong>en</strong>sure that a fungus that<br />

degrades cellulose does not release sugars at higher<br />

rates than it can absorb them.<br />

The regulation of cellulose degradation is achieved<br />

through a feedback system called catabolyte<br />

repression, <strong>in</strong> which g<strong>en</strong>es that <strong>en</strong>code <strong>en</strong>zymes are<br />

repressed wh<strong>en</strong> readily usable substrates (<strong>in</strong>clud<strong>in</strong>g<br />

glucose) are available <strong>in</strong> the <strong>en</strong>vironm<strong>en</strong>t.<br />

The most notable species of cellulolytic fungi are<br />

Chaetomium cellulolyticum, Humicola grisea and<br />

Trichoderma reesei. Fungi are also the only<br />

organisms capable of completely degrad<strong>in</strong>g lign<strong>in</strong>,<br />

a recalcitrant compound consist<strong>in</strong>g of units of<br />

ph<strong>en</strong>ylpropane l<strong>in</strong>ked together by chemical bonds<br />

of differ<strong>en</strong>t types. Among these, the most studied is<br />

the basidiomycete Phanerochaete chrysosporium,<br />

which is also capable of degrad<strong>in</strong>g other molecules<br />

which have a nature similar to lign<strong>in</strong> (Bosco et al.,<br />

2008a).<br />

The <strong>mushrooms</strong> and truffles that we gather <strong>in</strong> the<br />

woods are none other than the sexual fructification<br />

of filam<strong>en</strong>tous fungi that grow <strong>in</strong> soil, most of<br />

which live <strong>in</strong> close symbiosis with the roots of<br />

various forest plants such as chestnut, oak, beech,<br />

fir, larch, p<strong>in</strong>e, hazel and l<strong>in</strong>d<strong>en</strong>.<br />

To date we are unable to cultivate boletus, amanita,<br />

chantrelle, milkcap or russula <strong>mushrooms</strong>, or<br />

Caesar’s <strong>mushrooms</strong> or white or black truffles: for<br />

these we must await until completion of their<br />

lifecycles <strong>in</strong>side the plant roots, which term<strong>in</strong>ates<br />

with the production of their fruit<strong>in</strong>g bodies and<br />

frequ<strong>en</strong>tly dep<strong>en</strong>ds on the season and<br />

<strong>en</strong>vironm<strong>en</strong>tal conditions.<br />

A series of studies have be<strong>en</strong> us<strong>in</strong>g techniques to<br />

<strong>in</strong>oculate sterile plants with truffle spores, create<br />

symbiosis <strong>in</strong> the laboratory and th<strong>en</strong> transplant the<br />

mycorrhizal plants <strong>in</strong>to the field (Bosco et al.,<br />

2008b).<br />

There are, of course, other <strong>mushrooms</strong> that do not<br />

live <strong>in</strong> symbiosis with plants and as such can be<br />

cultivated on an <strong>in</strong>dustrial scale and are available<br />

all year round, such as Agaricus bisporus (J. E.<br />

Lange) Imbach. These <strong>mushrooms</strong> are usually<br />

grown on <strong>in</strong>exp<strong>en</strong>sive material such as straw and<br />

wood residues to which manure is added, and<br />

under well-controlled light conditions, temperature<br />

and humidity. After <strong>in</strong>oculation of the mycelium of<br />

the fungus obta<strong>in</strong>ed <strong>in</strong> pure culture <strong>in</strong>vad<strong>in</strong>g<br />

hyphae start grow<strong>in</strong>g all over the substrate and after<br />

3 weeks from sow<strong>in</strong>g beg<strong>in</strong> to produce fruit<strong>in</strong>g<br />

bodies that can be collected, packaged and<br />

distributed to retailers. A mushroom mycelium<br />

obta<strong>in</strong>ed from an ax<strong>en</strong>ic culture is used to <strong>in</strong>oculate<br />

the substrate and the hyphae beg<strong>in</strong> to grow. Three<br />

weeks after seed<strong>in</strong>g, the fruit<strong>in</strong>g bodies beg<strong>in</strong> to<br />

grow and can be gathered, packaged and s<strong>en</strong>t to<br />

resellers.<br />

Another mushroom produced on a large scale and<br />

particularly favoured <strong>in</strong> Japan and the Far East is<br />

L<strong>en</strong>t<strong>in</strong>ula edodes (Berk.) Pegler (“Shetake”), which<br />

is able to degrade the cellulose cont<strong>en</strong>t <strong>in</strong> trees.<br />

Small logs are hydrated by soak<strong>in</strong>g <strong>in</strong> water and the<br />

fungal mycelium is put <strong>in</strong>to pre-drilled holes <strong>in</strong><br />

each log. After about a year the first batch of<br />

fruit<strong>in</strong>g bodies appear (Carlile et al., 2001).<br />

Fungi liv<strong>in</strong>g <strong>in</strong> symbiosis with the roots of plants<br />

form associations called mycorrhizae (table 1),<br />

which can be found <strong>in</strong> around 90% of terrestrial<br />

plants: these symbioses <strong>in</strong>volve over 6,000 species<br />

of fungi and 240,000 vegetable species. The two<br />

symbiotic organisms, the fungus and the plant,<br />

<strong>in</strong>itiate a very close physiological, ecological and<br />

reproductive relationship that works to their mutual<br />

advantage. Fungi colonise the root without caus<strong>in</strong>g<br />

damage and get sugars, which they are unable to<br />

synthesise, and the plants receive m<strong>in</strong>eral nutri<strong>en</strong>ts<br />

and water absorbed and translocated through the<br />

large hyphal network (known as the Wood Wide<br />

Web) that ext<strong>en</strong>ds from the mycorrhizal roots to the<br />

surround<strong>in</strong>g ground and acts as a true auxiliary<br />

absorption system. Many types of mycorrhizae<br />

exist, with diverse morphological and physiological<br />

features, and they have colonised very diverse<br />

<strong>en</strong>vironm<strong>en</strong>ts (Bosco et al., 2008b).<br />

23


In our woodlands a large number of ectomycorrhiza<br />

can be found <strong>in</strong> forest plants such as the fir,<br />

larch, p<strong>in</strong>e, birch, chestnut, beech, hazel and oak,<br />

and oft<strong>en</strong> their fruit<strong>in</strong>g bodies (e.g. the well-known<br />

amanita, p<strong>in</strong>aroli, russula <strong>mushrooms</strong> and truffles)<br />

are visible to the naked eye.<br />

In total ectomycorrhizal symbionts <strong>in</strong>clude over<br />

500 species of <strong>mushrooms</strong>, among which we f<strong>in</strong>d<br />

members of the g<strong>en</strong>era Boletus, Lactarius, Russula,<br />

Suillus, Amanita, Paxillus, Morchella and Tuber.<br />

24<br />

Table 1. Types of mycorrhiza, host plants and symbiont fungi.<br />

Previously, the number of fruit<strong>in</strong>g bodies found <strong>in</strong><br />

association with various plant species was<br />

considered <strong>in</strong>dicative of the total number of fungal<br />

species <strong>in</strong> an ecosystem: <strong>in</strong> fact, molecular studies<br />

have shown that some species found <strong>in</strong> the roots<br />

produce few fruit<strong>in</strong>g bodies, while other species<br />

produc<strong>in</strong>g many carpophores <strong>in</strong> the forest were<br />

rarely found among the roots of plants.<br />

Type of mycorrhiza Host plant Symbiont fungi<br />

ectomycorrhiza Evergre<strong>en</strong> forest plants and trees such as fir<br />

and p<strong>in</strong>e and other forest trees such as beech,<br />

chestnut and oak<br />

Ecto- <strong>en</strong>domycorrhiza Ectomycorrhizal plants (p<strong>in</strong>e and larch),<br />

Ericales (Arbutus, Arctostaphylos), and<br />

Monotropa and Pyrola<br />

Ericoid mycorrhiza Some Ericales species such myrtle, heather,<br />

Calluna, Rhodod<strong>en</strong>dron<br />

About 5,000 species of fungi belong<strong>in</strong>g to<br />

Basidiomycota (Amanita, Boletus, Laccaria,<br />

Ascomycetes (Tuber) and Glomeromycota<br />

(Endogone)<br />

Ascomycota, Basidiomycota, some<br />

ectomycorrhizae (Boletus, Laccaria)<br />

Two species of Ascomycota, Hym<strong>en</strong>oscyphus<br />

ericae and Oiod<strong>en</strong>dron maius<br />

Orchid mycorrhiza All species of orchids Eight g<strong>en</strong>era of Basidiomycota, belong<strong>in</strong>g to the<br />

g<strong>en</strong>us Rhizoctonia<br />

Arbuscular mycorrhiza Bryophytes, Pteridophytes, Gymnosperms Around 150 species of the phylum<br />

and Angiosperms (around 80% of plant<br />

species)<br />

Glomeromycota<br />

It seems th<strong>en</strong> that just a few fungal species (fivet<strong>en</strong>)<br />

are alone able of coloniz<strong>in</strong>g around 50-70% of<br />

the roots of the plants on this Earth. Furthermore,<br />

some species form symbiosis with many species of<br />

forest plants (e.g. C<strong>en</strong>ococcum geophylum<br />

colonises approximately 150 host plant species),<br />

while others t<strong>en</strong>d to associate with very few or only<br />

one type of host (for example, Suillus luteus is<br />

found only <strong>in</strong> black p<strong>in</strong>e and Suillus grevillei <strong>in</strong> the<br />

larch tree) (Bosco et al., 2008b).<br />

In the same forests and woodlands ericoid<br />

mycorrhizae associate with such plants as myrtle,<br />

heather, Calluna and Rhodod<strong>en</strong>dron. Arbuscular<br />

mycorrhizae are the most commonly found<br />

mycorrhizal symbiosis <strong>in</strong> nature, associat<strong>in</strong>g with<br />

around 80% of plant species and most cultivated<br />

foodstuffs such as wheat, corn, barley, potatoes,<br />

tomatoes, vegetables, citrus fruits, grapes, olives,<br />

fruit trees, cotton, sugarcane, rubber tree and<br />

meadow flowers.<br />

In this type of mutual relationship, the symbiont<br />

fungus forms characteristic branch-like structures<br />

called “arbuscules” <strong>in</strong>side the root cells of the host<br />

plant and it is through these structures that the<br />

exchange of nutri<strong>en</strong>ts betwe<strong>en</strong> fungus and plant<br />

occurs.<br />

Irrespective of the type of mycorrhiza, the plants<br />

that host the fungal symbionts <strong>in</strong> their roots<br />

demonstrate not only better growth, due to the<br />

improved absorption of m<strong>in</strong>erals effected through<br />

the fungal hyphae that stretch betwe<strong>en</strong> the root and<br />

surround<strong>in</strong>g ground, but also a higher tolerance of<br />

biotic and abiotic stresses, and therefore a g<strong>en</strong>eral<br />

fitness far larger than plants devoid of these fungal<br />

symbionts (Giovannetti and Avio, 2002).<br />

Rec<strong>en</strong>tly, sci<strong>en</strong>tists have demonstrated that the<br />

sugars synthesised by a plant can be transported to<br />

other plants, ev<strong>en</strong> belong<strong>in</strong>g to other species, if<br />

both plants share the same type of symbiotic fungus<br />

and if the two symbionts are jo<strong>in</strong>ed by the same<br />

network of mycorrhizal fungal hyphae.<br />

This demonstrates that mycorrhizal fungal<br />

symbionts, beyond absorb<strong>in</strong>g and carry<strong>in</strong>g m<strong>in</strong>eral<br />

nutri<strong>en</strong>ts to the host plant, also have an important<br />

role to play <strong>in</strong> the redistribution of <strong>en</strong>ergy resources<br />

with<strong>in</strong> plant communities: <strong>in</strong> fact, adult plants can<br />

transmit nutri<strong>en</strong>ts via the fungal network to<br />

younger plants, thus <strong>in</strong>creas<strong>in</strong>g their chances of<br />

survival (Simard et al., 1997).<br />

The exist<strong>en</strong>ce of networks of hyphae that explore<br />

the <strong>en</strong>vironm<strong>en</strong>t and act as a vehicle for nutri<strong>en</strong>ts<br />

seems to be of fundam<strong>en</strong>tal importance for plants,


that must grow, develop and reproduce while<br />

anchored to the same spot. The importance of these<br />

subterranean fungal networks which l<strong>in</strong>k several<br />

plants together can be fully appreciated if we<br />

consider fungi’s characteristic capacity for<br />

<strong>in</strong>def<strong>in</strong>ite growth. Fungi can ext<strong>en</strong>d for hundreds of<br />

metres <strong>in</strong> every direction and <strong>in</strong> the most<br />

extraord<strong>in</strong>ary case, reported by several North<br />

American researchers <strong>in</strong> 1992, one unique fungal<br />

<strong>in</strong>dividual was shown to colonise 15 hectares <strong>in</strong> a<br />

forest (Smith et al., 1992).<br />

The mechanisms underly<strong>in</strong>g the formation of these<br />

fungal networks are still little understood, despite<br />

rec<strong>en</strong>t data show<strong>in</strong>g that hyphae orig<strong>in</strong>at<strong>in</strong>g from<br />

one <strong>in</strong>dividual are able to recognise and form<br />

anastomoses with the hyphae from another<br />

compatible <strong>in</strong>dividual and thus create networks of<br />

<strong>in</strong>def<strong>in</strong>ite l<strong>en</strong>gth (Giovannetti et al. 1999; 2001;<br />

2004; 2006) (fig. 6).<br />

In conclusion, studies on fungi have helped us to<br />

understand their importance <strong>in</strong> natural ecosystems<br />

and <strong>in</strong> agroecosystems: they are able to modify the<br />

availability, capture and use of soil resources, such<br />

as water and m<strong>in</strong>eral nutri<strong>en</strong>ts, and to directly<br />

<strong>in</strong>terv<strong>en</strong>e <strong>in</strong> the trophic relationships of plant<br />

communities and <strong>in</strong> the reg<strong>en</strong>eration of soil<br />

fertility.<br />

Fig 6. Graphic repres<strong>en</strong>tation of the networks of fungal mycorrhizae connect<strong>in</strong>g diverse plants.<br />

2.3 Mushrooms and <strong>en</strong>vironm<strong>en</strong>ts<br />

for growth<br />

2.3.1 Introduction<br />

The Italian Istituto Superiore per la Protezione e la<br />

Ricerca Ambi<strong>en</strong>tale (ISPRA) (Superior Institute for<br />

Environm<strong>en</strong>tal Protection and Research) <strong>in</strong>herited<br />

the role and responsibilities of the APAT (Ag<strong>en</strong>zia<br />

per la Protezione dell’Ambi<strong>en</strong>te e per i Servizi<br />

Tecnici) (Environm<strong>en</strong>tal Protection and Technical<br />

Services Ag<strong>en</strong>cy), the ’ICRAM (Istituto C<strong>en</strong>trale<br />

per la Ricerca Applicata al Mare) (C<strong>en</strong>tral Institute<br />

for Applied Maritimes Studies) and the INFS<br />

(Istituto Nazionale per la Fauna Selvatica)<br />

(National Wild Fauna Institute).<br />

As part of the <strong>in</strong>stitutional activities of ISPRA’s<br />

Dipartim<strong>en</strong>to Difesa della Natura (Nature Def<strong>en</strong>ce<br />

Dept.) the “Special Mushrooms Project” was<br />

established to develop understand<strong>in</strong>g and<br />

awar<strong>en</strong>ess of these ecosystem compon<strong>en</strong>ts,<br />

regard<strong>in</strong>g which very few national-level studies had<br />

be<strong>en</strong> previously carried out.<br />

To date, one of the ma<strong>in</strong> studies carried out by<br />

ISPRA, <strong>in</strong> collaboration with, above all, the<br />

25


Associazione Micologica Bresadola – C<strong>en</strong>tro Studi<br />

Micologici (AMB-CSM) and other partners,<br />

constituted a c<strong>en</strong>sus of Italian myxomycetes and<br />

macromycetes so as to compile a checklist of the<br />

national mycological flora which could th<strong>en</strong> be<br />

used <strong>in</strong> develop<strong>in</strong>g mycological cartography.<br />

A critical step <strong>in</strong> the acquisition of field data on<br />

comparable and acceptable national mycoflora is<br />

the classification of the habitats where fungi are<br />

found accord<strong>in</strong>g to standardised systems<br />

recognised at a European level.<br />

Thanks to their diffusion, differ<strong>en</strong>t trophic forms<br />

and specific ecological characteristics, fungi can be<br />

used as <strong>in</strong>dicators of biodiversity and<br />

<strong>en</strong>vironm<strong>en</strong>tal quality (a series of monthly<br />

sem<strong>in</strong>ars on this subject has be<strong>en</strong> tak<strong>in</strong>g place at<br />

ISPRA s<strong>in</strong>ce 2007). Therefore it would be<br />

advantageous for fungi to be m<strong>en</strong>tioned <strong>in</strong><br />

<strong>en</strong>vironm<strong>en</strong>tal protection laws as soon as possible.<br />

As th<strong>in</strong>gs curr<strong>en</strong>tly stand, no fungal species are<br />

conta<strong>in</strong>ed <strong>in</strong> the attachm<strong>en</strong>ts to the Bern<br />

Conv<strong>en</strong>tion (European Commission, 1982) or the<br />

Habitats Directive (European Commission, 1992)<br />

which detail the ma<strong>in</strong> acts of European legislation<br />

aimed at protect<strong>in</strong>g wild species and their habitats.<br />

Furthermore, <strong>in</strong> Italy, unlike <strong>in</strong> the case of vascular<br />

flora, <strong>in</strong>formation regard<strong>in</strong>g the l<strong>in</strong>ks betwe<strong>en</strong><br />

fungal species and their habitat is sporadic and<br />

localised. Other difficulties have also aris<strong>en</strong> from<br />

attempts to l<strong>in</strong>k mycoflora to their Italian habitats:<br />

• Great numbers of species<br />

• Difficulties <strong>in</strong> understand<strong>in</strong>g the<br />

taxonomy of many taxa.<br />

• Carpophore ph<strong>en</strong>ology, the emerg<strong>en</strong>ce<br />

cycles of which (from seasonal to<br />

multiannual) display an appar<strong>en</strong>t abs<strong>en</strong>ce<br />

of the species for years.<br />

Such problems, giv<strong>en</strong> the overall importance this<br />

k<strong>in</strong>gdom has with<strong>in</strong> ecosystems can easily be<br />

overcome by <strong>in</strong>creas<strong>in</strong>g understand<strong>in</strong>g of the role<br />

that mycoflora play <strong>in</strong> these same ecosystems. The<br />

acquisition of such understand<strong>in</strong>g, especially <strong>in</strong> the<br />

light of the dearth of <strong>in</strong>stitutional studies on the<br />

matter, should be considered a national priority<br />

and, consequ<strong>en</strong>tly, supported by adequate f<strong>in</strong>ancial<br />

resources to allow further research <strong>in</strong> this field.<br />

In rec<strong>en</strong>t years the role that fungi play as natural<br />

ecosystem regulators has be<strong>en</strong> recognised at a<br />

European level and as such ever more att<strong>en</strong>tion is<br />

be<strong>in</strong>g paid to mycoflora. We have, <strong>in</strong> fact, se<strong>en</strong> Red<br />

Lists of <strong>mushrooms</strong> ga<strong>in</strong><strong>in</strong>g greater diffusion <strong>in</strong> at<br />

least 35 EU member states. In August 2003, for<br />

26<br />

example, a report was pres<strong>en</strong>ted by the Swedish<br />

Environm<strong>en</strong>tal Protection Ag<strong>en</strong>cy (Naturvårdsverket)<br />

and by the European Council for the<br />

Conservation of Fungi (ECCF) to the Environm<strong>en</strong>t<br />

Directorate-G<strong>en</strong>eral of the European Commission<br />

(Dahlberg et al., 2003). That docum<strong>en</strong>t proposes<br />

the <strong>in</strong>clusion of 33 European fungal species <strong>in</strong>to<br />

App<strong>en</strong>dix 1 of the Bern Conv<strong>en</strong>tion and <strong>in</strong>to the<br />

Habitats Directive. The species recomm<strong>en</strong>ded for<br />

<strong>in</strong>clusion are rare <strong>in</strong> Europe and are already<br />

conta<strong>in</strong>ed <strong>in</strong> some countries’ Red Lists. These 33<br />

species are only a fraction of the threat<strong>en</strong>ed<br />

varieties throughout Europe, but the docum<strong>en</strong>t<br />

repres<strong>en</strong>ts a first step towards official recognition<br />

of the importance of mycoflora and of its<br />

conservation by the European Commission.<br />

In countries where research <strong>in</strong> this field is more<br />

developed it has be<strong>en</strong> recognised that<br />

macromycetes are threat<strong>en</strong>ed to a far greater degree<br />

than vascular flora. In Switzerland, 32% of the<br />

macromycete species recorded <strong>in</strong> the country have<br />

be<strong>en</strong> placed on the Red List (S<strong>en</strong>n-Irlet et al.,<br />

2007). The <strong>en</strong>dangered species are conc<strong>en</strong>trated<br />

ma<strong>in</strong>ly <strong>in</strong> dry grasslands and swamps.<br />

These data, extrapolated to cover the Italian<br />

ecological situation, underl<strong>in</strong>e the necessity of<br />

tak<strong>in</strong>g rapid action to build awar<strong>en</strong>ess of mycoflora<br />

and to make focused <strong>in</strong>terv<strong>en</strong>tions to protect it.<br />

With the aim of ext<strong>en</strong>d<strong>in</strong>g awar<strong>en</strong>ess and<br />

establish<strong>in</strong>g monitor<strong>in</strong>g systems across the national<br />

territory as part of an <strong>in</strong>ternational network, the<br />

Special Mushrooms Project <strong>in</strong>volved a systematic<br />

data-collection drive which specifically sought to<br />

associate the <strong>en</strong>vironm<strong>en</strong>ts where mycoflora was<br />

found <strong>in</strong> Italy with European classification systems<br />

govern<strong>in</strong>g soil use [CORINE Land Cover (APAT,<br />

2005)] and biotopes [CORINE Biotopes (AAVV,<br />

1991), EUNIS (Davies et al., 2004), NATURA<br />

2000 (European Commission, 2007)]. Beyond<br />

<strong>en</strong>abl<strong>in</strong>g us to learn more about the ecology of<br />

various <strong>en</strong>vironm<strong>en</strong>ts of national and European<br />

Community <strong>in</strong>terest, this laid the foundations for<br />

the use of fungal species as possible ecological<br />

<strong>in</strong>dicators <strong>in</strong> vary<strong>in</strong>g thematic cartography projects.<br />

These <strong>in</strong> turn make possible global biodiversityevaluation<br />

and other nature conservation <strong>in</strong>itiatives.<br />

2.3.2 Materials and methods<br />

Based on the mycological lists curr<strong>en</strong>tly available<br />

from the Special Mushrooms Project and from<br />

those records which were comparable to our<br />

classification systems, it has be<strong>en</strong> possible to


construct a database which correlates fungal<br />

species to their habitats.<br />

The lists used at this juncture were:<br />

• Database of heavy metals <strong>in</strong><br />

macromycete, edited by L. Cocchi and L.<br />

Vescovi, from the Gruppo Micologico e<br />

Naturalistico “R. Franchi” di Reggio<br />

Emilia - AMB (4.956 records).<br />

• Database of species deposited <strong>in</strong> the<br />

Herbarium mycologicum at the Natural<br />

History Civic Museum of V<strong>en</strong>ice, edited<br />

by G. Robich and M. Castoldi, Società<br />

V<strong>en</strong>eziana di Micologia - AMB,<br />

21.823 records).<br />

• ISPRA Database (edited by C.<br />

S<strong>in</strong>iscalco, ISPRA - Gruppo Micologico<br />

dell’Etruria Meridionale - AMB,<br />

5.334 records).<br />

• For the g<strong>en</strong>us Russula, Sarnari’s<br />

monograph (2000).<br />

• For alp<strong>in</strong>e fungi, works by Bizio, Campo,<br />

(1999) and Jamoni (2008) regard<strong>in</strong>g<br />

alp<strong>in</strong>e and sub-alp<strong>in</strong>e flora.<br />

• For dune <strong>en</strong>vironm<strong>en</strong>ts, works by Monti<br />

et al. (2000) (Tuscany) and Lantieri<br />

(2003) (Sicily).<br />

The fields curr<strong>en</strong>tly <strong>in</strong> the database, always<br />

expandible, are:<br />

• Nom<strong>en</strong>clature: G<strong>en</strong>us, Species, Variety.<br />

• Ecology: trophic features, host plants,<br />

habitats.<br />

• Geography: area, municipality, prov<strong>in</strong>ce,<br />

altitude, latitude, longitude.<br />

• Habitat: CORINE Land Cover third and<br />

fourth level, CORINE Biotopes third<br />

level, fourth level and fifth level, Natura<br />

2000.<br />

• Sample data: collector, id<strong>en</strong>tifier, date.<br />

Statistical analyses regard<strong>in</strong>g the perc<strong>en</strong>tage of<br />

occurr<strong>en</strong>ce for each type of habitat were carried<br />

out.<br />

First, data regard<strong>in</strong>g the occurr<strong>en</strong>ce of each species<br />

<strong>in</strong> differ<strong>en</strong>t habitats of the same area were analysed<br />

while exclud<strong>in</strong>g those data perta<strong>in</strong><strong>in</strong>g to record<strong>in</strong>gs<br />

of the same species <strong>in</strong> the same type of habitats <strong>in</strong><br />

that area.<br />

Cluster analysis was used to group the CORINE<br />

Biotopes – fourth level data – with regards to the<br />

distribution and frequ<strong>en</strong>cy of mycological species’<br />

occurr<strong>en</strong>ce. To this <strong>en</strong>d, the M<strong>in</strong>itab software was<br />

used. We applied s<strong>in</strong>gle-l<strong>in</strong>kage, complete-l<strong>in</strong>kage<br />

and Ward methods to the Manhattan and Euclidean<br />

distances calculated on standardised values. Bonds<br />

that cont<strong>in</strong>ued to repeat themselves dur<strong>in</strong>g analysis<br />

were id<strong>en</strong>tified. F<strong>in</strong>ally, based on the ordered<br />

tables, “characteristic species” and “differ<strong>en</strong>tial<br />

species” were derived for each category of habitat.<br />

2.3.3 Results<br />

We employed a process of upscal<strong>in</strong>g that better<br />

<strong>en</strong>ables mycological compon<strong>en</strong>ts to be classified at<br />

the various levels <strong>in</strong>to which the Italian ecological<br />

<strong>en</strong>vironm<strong>en</strong>t may be separated. We pres<strong>en</strong>t here the<br />

comparative and statistical analyses, follow<strong>in</strong>g their<br />

hierarchical classification. The species have be<strong>en</strong><br />

ordered accord<strong>in</strong>g to the frequ<strong>en</strong>cy they occurred <strong>in</strong><br />

the records regard<strong>in</strong>g the diverse habitats analysed.<br />

2.3.3.1 CORINE Land Cover, Third level<br />

Us<strong>in</strong>g the CORINE Land Cover (Third level)<br />

categories, the species-habitat association provides<br />

macro-level <strong>in</strong>formation.<br />

This type of classification made it possible to<br />

obta<strong>in</strong> useful <strong>in</strong>formation on the distribution of<br />

macromycetes ev<strong>en</strong> across d<strong>en</strong>sely anthropic areas,<br />

and has furthermore <strong>en</strong>abled a broad spectrum<br />

analysis of species common to the coniferous and<br />

deciduous forests. The species were ranked<br />

accord<strong>in</strong>g to the frequ<strong>en</strong>cy they occurred <strong>in</strong> the<br />

records regard<strong>in</strong>g the diverse habitats analysed.<br />

Land Cover code, third level: 1.4.1. Gre<strong>en</strong><br />

urban areas<br />

(508 records, 158 species)<br />

Agaricus bitorquis (Quél.) Sacc.; Agaricus<br />

campestris L.; Agaricus bresadolanus Bohus;<br />

Agaricus xanthodermus G<strong>en</strong>ev.; Copr<strong>in</strong>us comatus<br />

(O.F. Müll.) Pers.; Inocybe rimosa (Bull.) P.<br />

Kumm.; Lepista sordida (Schumach.) S<strong>in</strong>ger;<br />

Lepiota sub<strong>in</strong>carnata J. E. Lange; Leucoagaricus<br />

leucothites (Vittad.) Wasser; Lyophyllum decastes<br />

(Fr.) S<strong>in</strong>ger; Mitrophora semilibera (DC.) Lév.;<br />

Morchella hort<strong>en</strong>sis Boud.; Psathyrella<br />

candolleana (Fr.) Maire; Russula ochrospora<br />

(Nicolaj ex Quadr. & W. Rossi) Quadr.; Boletus<br />

rubellus Kromb.<br />

27


Lignicolous species:<br />

Agrocybe cyl<strong>in</strong>dracea (DC.) Gillet; Armillaria<br />

mellea (Vahl) P. Kumm.; Flammul<strong>in</strong>a velutipes<br />

(Curtis) S<strong>in</strong>ger; Pleurotus ostreatus (Jacq.) P.<br />

Kumm.; Polyporus squamosus (Huds.) Fr.<br />

Land Cover code, third level: 3.2.1. Natural<br />

grasslands<br />

(907 records, 281 species)<br />

Marasmius oreades (Bolton) Fr.; Lycoperdon<br />

utriforme Bull.; Agaricus macrocarpus (F. H.<br />

Møller) F. H. Møller; Agaricus campestris L.;<br />

Amanita vittad<strong>in</strong>i (Moretti) Sacc.; Leucoagaricus<br />

leucothites (Vittad.) Wasser; Volvariella<br />

gloiocephala (DC.) Boekhout & Enderle; Agaricus<br />

arv<strong>en</strong>sis Schaeff.; Helvella crispa (Scop.) Fr.;<br />

Agaricus xanthodermus G<strong>en</strong>ev.; Hygrocybe <strong>in</strong>grata<br />

J. P. J<strong>en</strong>s<strong>en</strong> & F. H. Møller; Hygrocybe conica<br />

(Schaeff.) P. Kumm.; Hygrocybe quieta (Kühner)<br />

S<strong>in</strong>ger; Hygrocybe calyptriformis (Berk.) Fayod;<br />

Hygrocybe prat<strong>en</strong>sis (Fr.) Murrill; Macrolepiota<br />

procera (Scop.) S<strong>in</strong>ger; Hygrocybe nitrata (Pers.)<br />

Wünsche; Hygrocybe psittac<strong>in</strong>a (Schaeff.) P.<br />

Kumm.; Panaeol<strong>in</strong>a fo<strong>en</strong>isecii (Pers.) Maire;<br />

Hygrocybe ceracea (Wulf<strong>en</strong>) P. Kumm.;<br />

Hygrocybe punicea (Fr.) P. Kumm.; Hygrocybe<br />

irrigata (Pers.) Bon; Inocybe fraudans (Britzelm.)<br />

Sacc.; Calvatia gigantea (Batsch) Lloyd; Laccaria<br />

laccata (Scop.) Cooke; Copr<strong>in</strong>us comatus (O. F.<br />

Müll.) Pers.; Entoloma mougeotii (Fr.) Hesler;<br />

Hygrocybe citr<strong>in</strong>ovir<strong>en</strong>s (J. E. Lange) Jul. Schäff.;<br />

Hygrocybe cocc<strong>in</strong>ea (Schaeff.) P. Kumm.;<br />

Chlorophyllum rhacodes (Vittad.) Vell<strong>in</strong>ga;<br />

Lycoperdon prat<strong>en</strong>se Pers.<br />

Land Cover code, third level: 3.1.1. Broadleaved<br />

forest<br />

(2,653 records, 590 species)<br />

Boletus subtom<strong>en</strong>tosus L.; Cantharellus cibarius<br />

Fr.; Russula vesca Fr.; Russula cyanoxantha<br />

(Schaeff.) Fr.; Boletus rhodopurpureus Smotl.;<br />

Amanita caesarea (Scop.) Pers.; Boletus reticulatus<br />

Schaeff.; Boletus calopus Pers.; Boletus luridus<br />

Schaeff.; Boletus edulis Bull.; Boletus p<strong>in</strong>ophilus<br />

Pilát & Dermek; Amanita rubesc<strong>en</strong>s Pers.;<br />

Cort<strong>in</strong>arius caperatus (Pers.) Fr.; Amanita<br />

muscaria (L.) Lam; Mitrophora semilibera (DC.)<br />

Lév.; Verpa bohemica (Krombh.) J. Schröt.;<br />

Russula nigricans (Bull.) Fr.; Amanita phalloides<br />

(Vaill. ex Fr.) L<strong>in</strong>k; Infundibulicybe geotropa<br />

(Bull.) Harmaja; Clitocybe nebularis (Batsch) P.<br />

Kumm.; Lactarius piperatus (L.) Pers.; Boletus<br />

28<br />

app<strong>en</strong>diculatus Schaeff.; Russula delica Fr.;<br />

Morchella escul<strong>en</strong>ta (L.) Pers.; Russula acrifolia<br />

Romagn.; Amanita vag<strong>in</strong>ata (Bull.) Lam.;<br />

Calocybe gambosa (Fr.) Donk; Russula chloroides<br />

(Krombh.) Bres.; Amanita panther<strong>in</strong>a (DC.)<br />

Krombh.; Boletus aereus Bull.; Boletus<br />

pulchrot<strong>in</strong>ctus Alessio; Fistul<strong>in</strong>a hepatica<br />

(Schaeff.) With.; Russula albonigra (Krombh.) Fr.;<br />

Agaricus silvicola var. silvicola (Vittad.) Peck;<br />

Armillaria tabesc<strong>en</strong>s (Scop.) Emel; Boletus queletii<br />

Schulzer; Boletus satanas L<strong>en</strong>z; Gymnopus fusipes<br />

(Bull.) Gray; Entoloma s<strong>in</strong>uatum (Bull.) P. Kumm.;<br />

Boletus rubellus Krombh.<br />

Land Cover code, third level: 3.1.2. Coniferous<br />

forest (<strong>in</strong>clud<strong>in</strong>g aforestation)<br />

(1,040 records, 417 species)<br />

Agaricus silvicola var. silvicola (Vittad.) Peck;<br />

Amanita muscaria (L.) Lam; Amanita rubesc<strong>en</strong>s<br />

Pers.; Boletus calopus Pers.; Boletus edulis Bull.;<br />

Boletus erythropus Pers.; Boletus p<strong>in</strong>ophilus Pilát<br />

& Dermek; Craterellus lutesc<strong>en</strong>s (Fr.) Fr.;<br />

Chalciporus piperatus (Bull.) Bataille;<br />

Chroogomphus rutilus (Schaeff.) O. K. Mill.;<br />

Clitocybe gibba (Pers.) P. Kumm.; Clitocybe<br />

nebularis (Batsch) P. Kumm.; Clitopilus prunulus<br />

(Scop.) P. Kumm.; Rhodocollybia butyracea (Bull.)<br />

L<strong>en</strong>nox; Entoloma hirtipes (Schumach.) M. M.<br />

Moser; Geopora ar<strong>en</strong>osa (Fuckel) S. Ahmad;<br />

Hebeloma later<strong>in</strong>um (Batsch) Vesterh.;<br />

Hygrophorus agathosmus (Fr.) Fr.; Hygrophorus<br />

latitabundus Britzelm.; Hygrophorus marzuolus<br />

(Fr.) Bres.; Inocybe ar<strong>en</strong>icola (R. Heim) Bon;<br />

Inocybe bongardii (We<strong>in</strong>m.) Quél.; Inocybe<br />

dun<strong>en</strong>sis P. D. Orton; Catathelasma imperiale (Fr.)<br />

S<strong>in</strong>ger; Inocybe geophylla (Fr.) P. Kumm.; Inocybe<br />

mixtilis (Britzelm.) Sacc.; Inocybe nitidiuscula<br />

(Britzelm.) Lapl.; Inocybe c<strong>in</strong>c<strong>in</strong>nata var. major (S.<br />

Peters<strong>en</strong>) Kuyper; Inocybe piceae Stangl &<br />

Schwöbel; Inocybe fraudans (Britzelm.) Sacc.;<br />

Inocybe rimosa (Bull.) P. Kumm.; Inocybe<br />

spl<strong>en</strong>d<strong>en</strong>s R. Heim; Lactarius chrysorrheus Fr.;<br />

Lactarius deliciosus (L.) Gray; Lactarius<br />

deterrimus Gröger; Lactarius salmonicolor R.<br />

Heim & Leclair; Lactarius sanguifluus (Paulet) Fr.;<br />

Lactarius scrobiculatus (Scop.) Fr.; Lycoperdon<br />

perlatum Pers.; Myc<strong>en</strong>a pura (Pers.) P. Kumm.;<br />

Rhizopogon roseolus (Corda) Th. Fr.; Cort<strong>in</strong>arius<br />

caperatus (Pers.) Fr.; Russula torulosa Bres.;<br />

Sarcosphaera coronaria (Jacq.) J. Schröt.; Suillus<br />

bell<strong>in</strong>ii (Inz<strong>en</strong>ga) Watl<strong>in</strong>g; Suillus coll<strong>in</strong>itus (Fr.)<br />

Kuntze; Suillus granulatus (L.) Roussel; Suillus


luteus (L.) Roussel; Suillus mediterrane<strong>en</strong>sis<br />

(Jacquet. & J. Blum) Redeuilh; Suillus variegatus<br />

(Sw.) Kuntze; Tricholoma myomyces (Pers.) J. E.<br />

Lange; Tricholoma scalpturatum (Fr.) Quél.;<br />

Tricholomopsis rutilans (Schaeff.) S<strong>in</strong>ger; Boletus<br />

badius (Fr.) Fr.<br />

The comparison betwe<strong>en</strong> the lists at this level has<br />

allowed us to extrapolate a great deal of ubiquitous<br />

species listed below. Knowledge of these species<br />

has facilitated the <strong>in</strong>terpretation of lists derived<br />

from the application of the Nature 2000, EUNIS<br />

and CORINE Biotopes classification systems,<br />

allow<strong>in</strong>g a "clean<strong>in</strong>g up" of the species<br />

characteristics and differ<strong>en</strong>tials id<strong>en</strong>tification<br />

tables.<br />

Strongly ubiquitous species (found both <strong>in</strong><br />

forests and meadows)<br />

(3,693 records, 950 species)<br />

Lycoperdon utriforme Bull.; Inocybe fraudans<br />

(Britzelm.) Sacc.; Agaricus arv<strong>en</strong>sis Schaeff.;<br />

Helvella crispa (Scop.) Fr.; Cantharellus cibarius<br />

Fr.; Macrolepiota procera (Scop.) S<strong>in</strong>ger; Russula<br />

cyanoxantha (Schaeff.) Fr.; Hygrocybe conica<br />

(Schaeff.) P. Kumm.; Calocybe gambosa (Fr.)<br />

Donk; Hygrocybe quieta (Kühner) S<strong>in</strong>ger;<br />

Clitocybe nebularis (Batsch) P. Kumm.; Boletus<br />

luridus Schaeff.; Lactarius deliciosus (L.) Gray;<br />

Infundibulicybe geotropa (Bull.) Harmaja; Boletus<br />

reticulatus Schaeff.; Agaricus silvicola var.<br />

silvicola (Vittad.) Peck; Lepista nuda (Bull.)<br />

Cooke; Laccaria laccata (Scop.) Cooke; Myc<strong>en</strong>a<br />

pura (Pers.) P. Kumm.; Clitocybe gibba (Pers.) P.<br />

Kumm.; Lycoperdon perlatum Pers.; Amanita<br />

vag<strong>in</strong>ata (Bull.) Lam.; Lepista flaccida (Sowerby)<br />

Pat.; Lepista sordida (Schumach.) S<strong>in</strong>ger; Boletus<br />

ferrug<strong>in</strong>eus Schaeff.; Inocybe spl<strong>en</strong>d<strong>en</strong>s R. Heim;<br />

Phallus impudicus L.; Russula viresc<strong>en</strong>s (Schaeff.)<br />

Fr.; Bovista aestivalis (Bonord.) Demoul<strong>in</strong>;<br />

Paxillus <strong>in</strong>volutus (Batsch) Fr.; Lyophyllum<br />

decastes (Fr.) S<strong>in</strong>ger; Amanita crocea (Quél.)<br />

S<strong>in</strong>ge; Morchella elata Fr.; Clitocybe phyllophila<br />

(Pers.) P. Kumm.; Clavul<strong>in</strong>a coralloides (L.) J.<br />

Schröt.; Inocybe <strong>in</strong>odora Vel<strong>en</strong>.; Schizophyllum<br />

commune Fr.; Hygrocybe persisit<strong>en</strong>s (Britzelm.)<br />

S<strong>in</strong>ger; Marasmius oreades (Bolton) Fr.; Agaricus<br />

macrocarpus (F. H. Møller) F. H. Møller; Agaricus<br />

campestris; Suillus coll<strong>in</strong>itus (Fr.) Kuntze;<br />

Leucoagaricus leucothites (Vittad.) Wasser;<br />

Lactarius deterrimus Gröger; Agaricus<br />

xanthodermus G<strong>en</strong>ev.; Inocybe mixtilis (Britzelm.)<br />

Sacc.; Cort<strong>in</strong>arius praestans Cordier; Hygrocybe<br />

nitrata (Pers.) Wünsche; Boletus rubellus Krombh.;<br />

Morchella escul<strong>en</strong>ta (L.) Pers.; Chlorophyllum<br />

rhacodes (Vittad.) Vell<strong>in</strong>ga; Copr<strong>in</strong>us comatus (O.<br />

F. Müll.) Pers.; Calvatia gigantea (Batsch) Lloyd;<br />

Inocybe piceae Stangl & Schwöbel; Clavul<strong>in</strong>a<br />

rugosa (Bull.) J. Schröt.; Russula delica Fr.;<br />

Entoloma mougeotii (Fr.) Hesler; Chroogomphus<br />

rutilus (Schaeff.) O. K. Mill.; Russula torulosa<br />

Bres.; Clitocybe rivulosa (Pers.) P. Kumm.;<br />

Lecc<strong>in</strong>um duriusculum (Schulzer ex Kalchbr.)<br />

S<strong>in</strong>ger; Leucoagaricus barssii (Zeller) Vell<strong>in</strong>ga;<br />

Agaricus osecanus Pilát; Gymnopus fusipes (Bull.)<br />

Gray; Lycoperdon excipuliforme (Scop.) Pers.;<br />

Boletus dryophilus Thiers; Entoloma <strong>in</strong>canum (Fr.)<br />

Hesler; Agaricus augustus Fr.; Hygrophorus<br />

hypothejus (Fr.) Fr.<br />

Species ubiquitous to forests<br />

(3,693 records, 949 species)<br />

Amanita muscaria (L.) Lam; Boletus p<strong>in</strong>ophilus<br />

Pilát & Dermek; Boletus calopus Pers.; Amanita<br />

rubesc<strong>en</strong>s Pers.; Cort<strong>in</strong>arius caperatus (Pers.) Fr.;<br />

Russula vesca Fr.; Boletus erythropus; Chalciporus<br />

piperatus (Bull.) Bataille; Inocybe rimosa (Bull.) P.<br />

Kumm.; Amanita phalloides (Vaill. ex Fr.) L<strong>in</strong>k;;<br />

Clitopilus prunulus (Scop.) P. Kumm.; Tricholoma<br />

scalpturatum (Fr.) Quél.; Russula foet<strong>en</strong>s (Pers.)<br />

Pers.; Gyromitra gigas (Krombh.) Cooke;<br />

Lactarius piperatus (L.) Pers.; Inocybe geophylla<br />

(Fr.) P. Kumm.; Sarcosphaera coronaria (Jacq.) J.<br />

Schröt.; Tricholoma myomyces (Pers.) J.E. Lange;<br />

Pluteus cerv<strong>in</strong>us (Schaeff.) P. Kumm.; Lactarius<br />

chrysorrheus Fr.; Amanita panther<strong>in</strong>a (DC.)<br />

Krombh.; Russula albonigra (Krombh.) Fr.;<br />

Hydnum repandum L.; Russula acrifolia Romagn.;<br />

Rhodocollybia butyracea (Bull.) L<strong>en</strong>nox;<br />

Tricholoma saponaceum (Fr.) P. Kumm.; Xerula<br />

radicata (Relhan) Dörfelt; Gyroporus castaneus<br />

(Bull.) Quél.; Rhodocybe gem<strong>in</strong>a (Fr.) Kuyper &<br />

Noordel.; Amanita citr<strong>in</strong>a (Pers.) Pers.; Amanita<br />

excelsa (Fr.) P. Kumm.; Clitocybe odora (Bull.) P.<br />

Kumm.; Hebeloma later<strong>in</strong>um (Batsch) Vesterh.;<br />

Rhizopogon roseolus (Corda) Th. Fr.; Russula<br />

fragilis Fr.; Russula romellii Maire; Gymnopus<br />

dryophilus (Bull.) Murrill; Lactarius volemus (Fr.)<br />

Fr.; Tricholoma columbetta (Fr.) P. Kumm.;<br />

Boletus chrys<strong>en</strong>teron Bull.; Boletus pru<strong>in</strong>atus Fr. &<br />

Hök; Kuehneromyces mutabilis (Schaeff.) S<strong>in</strong>ger &<br />

A. H. Sm.; Tricholoma sulphureum (Bull.) P.<br />

Kumm.; Hypholoma fasciculare (Huds.) P.<br />

Kumm.; Trametes versicolor (L.) Lloyd; Inocybe<br />

leucoblema Kühner; Suillus lakei (Murrill) A. H.<br />

29


Sm. & Thiers; Tricholoma imbricatum (Fr.) P.<br />

Kumm.; Ramaria pallida (Schaeff.) Rick<strong>en</strong>;<br />

Boletus arm<strong>en</strong>iacus Quél.; Tap<strong>in</strong>ella atrotom<strong>en</strong>tosa<br />

(Batsch) Šutara; Auricularia auricula-judae (Bull.)<br />

Berk.; Hebeloma s<strong>in</strong>apizans (Fr.) Sacc.; Russula<br />

risigall<strong>in</strong>a (Batsch) Sacc.; Craterellus tubaeformis<br />

(Schaeff.) Quél.; Helvella acetabulum (L.) Quél.;<br />

Amanita submembranacea (Bon) Gröger;<br />

Cort<strong>in</strong>arius laniger Fr.; Lactarius pallidus Pers.;<br />

Lepiota ignivolvata Bousset & Joss. ex Joss.;<br />

Stropharia aerug<strong>in</strong>osa (Curtis) Quél.; Trametes<br />

pubesc<strong>en</strong>s (Schumach.) Pilát; Tricholoma<br />

orirub<strong>en</strong>s Quél.; Hydnum rufesc<strong>en</strong>s Pers.;<br />

Lactarius vellereus (Fr.) Fr.; Russula heterophylla<br />

(Fr.) Fr.; Hydnum albidum Peck; Inocybe<br />

oblectabilis (Britzelm.) Sacc.; Lepiota clypeolaria<br />

(Bull.) P. Kumm.; Tricholoma port<strong>en</strong>tosum (Fr.)<br />

Quél.; Amanita gemmata (Fr.) Bertill.; Copr<strong>in</strong>opsis<br />

picacea (Bull.) Redhead, Vilgalys & Moncalvo;<br />

Lyophyllum rhopalopodium Clém<strong>en</strong>çon;<br />

Gymnopilus p<strong>en</strong>etrans (Fr.) Murrill; Inocybe<br />

erubesc<strong>en</strong>s A. Blitt; Lactarius uvidus (Fr.) Fr.;<br />

Ramaria botrytis (Pers.) Rick<strong>en</strong>; Ramaria gracilis<br />

(Pers.) Quél.; Russula amo<strong>en</strong>a Quél.; Russula<br />

parazurea Jul. Schäff.; Tricholoma batschii<br />

Guld<strong>en</strong>; Agaricus ur<strong>in</strong>asc<strong>en</strong>s (Jul. Schäff. & F. H.<br />

Møller) S<strong>in</strong>ger; Russula luteotacta Rea;<br />

Auriscalpium vulgare Gray; Hypholoma capnoides<br />

(Fr.) P. Kumm.; Limacella guttata (Pers.) Konrad<br />

& Maubl.; Paxillus filam<strong>en</strong>tosus Fr.; Pholiota<br />

squarrosa (Bull.) P. Kumm.; Polyporus lepideus<br />

30<br />

Fr.; Ramaria stricta (Pers.) Quél.; Russula<br />

persic<strong>in</strong>a Krombh.<br />

2.3.3.2 CORINE Biotopes Third level<br />

Use of the third level of the CORRINE Biotopes<br />

classification system characterises several habitats<br />

of particular importance and <strong>in</strong>terest for the<br />

European Community.<br />

45.2 Cork (Habitat Natura 2000: 9330 Forests of<br />

Quercus suber)<br />

(221 records, 100 species)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Amanita ponderosa Mal<strong>en</strong>çon & R. Heim; Boletus<br />

pseudoregius (He<strong>in</strong>r. Huber) Estadès; Gymnopilus<br />

suberis (Maire) S<strong>in</strong>ger; Plectania plat<strong>en</strong>sis (Speg.)<br />

Rifai; Russula albonigra (Krombh.) Fr.;<br />

Trichaptum biforme (Fr.) Ryvard<strong>en</strong>.<br />

45.3 Ilex (Habitat Natura 2000: 9340 Forests of<br />

Quercus ilex and Quercus rotundifolia)<br />

(198 records, 75 species)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Boletus aemilii Barbier; Boletus pulchrot<strong>in</strong>ctus<br />

Alessio; Boletus rhodoxanthus (Krombh.) Kall<strong>en</strong>b.;<br />

Russula ilicis Romagn., Chevassut & Privat (Fig. 7<br />

(Chiari et al., 2008)); Lecc<strong>in</strong>ellum lepidum<br />

(Bouchet ex Essette) Bres<strong>in</strong>sky & Manfr. B<strong>in</strong>der.<br />

Fig. 7. Russula ilicis Romagnesi, Chevassut & Privat (Photo: Maurizio Chiari).


Fig. 8. Real distribution of Russula ilicis Romagnesi, Chevassut & Privat <strong>in</strong> the Prov<strong>in</strong>ce of V<strong>en</strong>ice obta<strong>in</strong>ed by associat<strong>in</strong>g location data from<br />

mycological records and the polygons from the Carta della Natura (Nature Map) (ISPRA; 2008) of the relative habitats (ilex: CORINE<br />

Biotopes 45.3; Natura 2000).<br />

41.9 Chestnut (Habitat Natura 2000: 9260<br />

Forests of Castanea sativa)<br />

Frequ<strong>en</strong>t species: Cantharellus cibarius Fr.;<br />

Russula vesca Fr.; Amanita caesarea (Scop.) Pers.;<br />

Boletus reticulatus Schaeff.; Boletus subtom<strong>en</strong>tosus<br />

L.; Fistul<strong>in</strong>a hepatica (Schaeff.) With.; Russula<br />

cyanoxantha (Schaeff.) Fr.; Lactarius piperatus<br />

(L.) Pers.; Gymnopus fusite (Bull.) Gray; Amanita<br />

phalloides (Vaill. ex Fr.) L<strong>in</strong>k; Amanita rubesc<strong>en</strong>s<br />

Pers.; Boletus edulis Bull.; Lactarius volemus (Fr.)<br />

Fr.; Ramaria formosa (Pers.) Quél.<br />

42.8 Mediterranean P<strong>in</strong>e forests (Habitat<br />

Natura 2000: 9540 Mediterranean p<strong>in</strong>e forests<br />

with <strong>en</strong>demic Mesogean p<strong>in</strong>es)<br />

(143 records, 75 species)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Buchwaldoboletus lignicola (Kall<strong>en</strong>b.) Pilát;<br />

Suillus mediterrane<strong>en</strong>sis (Jacquet. & J. Blum)<br />

Redeuilh; Myc<strong>en</strong>a seynesii Quél.; Rhizopogon<br />

roseolus (Corda) Th. Fr.; Boletus obscuratus<br />

(S<strong>in</strong>ger) J. Blum.<br />

Frequ<strong>en</strong>t species:<br />

Lactarius sanguifluus (Paulet) Fr.; Cantharellus<br />

cibarius Fr.; Lactarius deliciosus (L.) Gray; Suillus<br />

coll<strong>in</strong>itus (Fr.) Kuntze; Tricholoma saponaceum<br />

(Fr.) P. Kumm.<br />

At this level by superimpos<strong>in</strong>g the Habitats Map<br />

and the Nature Map (Various Authors, 2004;<br />

AAVV, 2009th; AAVV, 2009b) with the maps of<br />

the stations where the mycological record<strong>in</strong>gs were<br />

made, one obta<strong>in</strong>s the real and pot<strong>en</strong>tial distribution<br />

maps (fig. 8 and fig. 10).<br />

2.3.3.3 CORINE Biotopes Fourth level<br />

At the fourth level of the CORINE Biotopes system<br />

it is possible to id<strong>en</strong>tify other lead<strong>in</strong>g species,<br />

especially <strong>in</strong> those <strong>en</strong>vironm<strong>en</strong>ts considered as<br />

be<strong>in</strong>g of particular ecological importance at<br />

European level (Dir. 92/43 CEE).<br />

16.27 Dune juniper thickets and woods (Habitat<br />

Natura 2000: 2250 Coastal dunes with Juniperus<br />

spp. – Priority)<br />

(214 records, 94 species)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Geastrum m<strong>in</strong>imum Schwe<strong>in</strong>.; Geastrum schmidelii<br />

Vittad.; Helvella juniperi M. Filippa & Baiano;<br />

Marcelle<strong>in</strong>a atroviolacea (Delile ex De Seynes)<br />

Brumm.; Melanoleuca rasilis (Fr.) S<strong>in</strong>ger; Pithya<br />

cupressi (Batsch) Fuckel.<br />

Frequ<strong>en</strong>t species:<br />

Geopora ar<strong>en</strong>icola (Lév.) Kers; Greletia<br />

planchonis (Dunal ex Boud.) Donad<strong>in</strong>i; Inocybe<br />

dulcamara (Alb. & Schwe<strong>in</strong>.) P. Kumm.;<br />

Pustularia patav<strong>in</strong>a (Cooke & Sacc.) Boud.;<br />

Octospora convexula (Pers.) L. R. Batra; Xerula<br />

mediterranea (Pacioni & Lalli) Quadr. & Lungh<strong>in</strong>i.<br />

31


16.29 Wooded dunes (Habitat Natura 2000:<br />

2270 Dunes with forests of P<strong>in</strong>us p<strong>in</strong>ea and/or<br />

P<strong>in</strong>us p<strong>in</strong>aster – Priority)<br />

(126 records, 73 species)<br />

32<br />

Fig. 9. Inocybe psammobrunnea Bon (Photo: M. Marchetti).<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Inocybe pseudodestricta Stangl & J. Veselský;<br />

Inocybe psammobrunnea Bon (Fig. 9); Melanoleuca<br />

microcephala (P. Karst.) S<strong>in</strong>ger; Rhizopogon<br />

luteolus Fr. & Nordholm.<br />

Fig. 10: Real distribution of Inocybe psammobrunnea Bon <strong>in</strong> the Prov<strong>in</strong>ce of Rovigo obta<strong>in</strong>ed by associat<strong>in</strong>g location data from mycological<br />

records and the polygons from the Carta della Natura (Nature Map) (ISPRA; 2008) of the relative habitats (wooded dunes: CORINE<br />

Biotopes 16.29, Habitat Natura 2000: 2270 - Priority).<br />

Very common species:<br />

Geopora ar<strong>en</strong>osa (Fuckel) S. Ahmad; Inocybe<br />

ar<strong>en</strong>icola (R. Heim) Bon; Inocybe dun<strong>en</strong>sis P. D.<br />

Orton; Inocybe heimii Bon; Inocybe <strong>in</strong>odora<br />

Vel<strong>en</strong>.; Inocybe dulcamara (Alb. & Schwe<strong>in</strong>.) P.<br />

Kumm.; Melanoleuca rasilis (Fr.) S<strong>in</strong>ger; Inocybe<br />

rufuloides Bon.


36.11 Boreo-Alpic acid snow-patch communities<br />

(Habitat Natura 2000: 6150 Siliceous alp<strong>in</strong>e and<br />

boreal grasslands)<br />

(90 records, 88 species)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Hebeloma bruchetii Bon; Octospora humosa (Fr.)<br />

D<strong>en</strong>nis; Naucoria tantilla J. Favre; Cort<strong>in</strong>arius<br />

c<strong>in</strong>namomeoluteus P. D. Orton; Cort<strong>in</strong>arius<br />

anomalus (Pers.) Fr.; Entoloma papillatum (Bres.)<br />

D<strong>en</strong>nis; Galer<strong>in</strong>a pseudotundrae Kühner; Helvella<br />

queletii Schulzer; Inocybe bulbosissima (Kühner)<br />

Bon; Inocybe giacomi O. K. Mill.; Laccaria<br />

montana S<strong>in</strong>ger; Lactarius dryadophilus Kühner;<br />

Peziza alaskana E. K. Cash; Russula laccata<br />

Huijsman; Russula saliceti cola (S<strong>in</strong>ger) Kühner ex<br />

Knuds<strong>en</strong> & T. Borg<strong>en</strong>; Scutell<strong>in</strong>ia kerguel<strong>en</strong>sis<br />

(Berk.) Kuntze; Scutell<strong>in</strong>ia superba (Vel<strong>en</strong>.) Le<br />

Gal.<br />

Frequ<strong>en</strong>t species:<br />

Cort<strong>in</strong>arius favrei D. M. H<strong>en</strong>d.; Helvella corium<br />

(O. Weberb.) Massee; Inocybe salicis-herbaceae<br />

Kühner; Myc<strong>en</strong>a pura (Pers.) P. Kumm.; Helvella<br />

lacunosa Afzel.<br />

36.12 Boreo-Alpic calcareous snow-patch<br />

communities (Habitat Natura 2000: 6170 Alp<strong>in</strong>e<br />

and subalp<strong>in</strong>e calcareous grasslands)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Helvella alpestris Boud.; Cort<strong>in</strong>arius<br />

chamaesalicis Bon; Cort<strong>in</strong>arius phaeochrous J.<br />

Favre; Hebeloma alp<strong>in</strong>um (J. Favre) Bruchet;<br />

Helvella capuc<strong>in</strong>a Quél.; Helvella solitaria (P.<br />

Karst.) P. Karst.; Inocybe albovelutipes Stangl;<br />

Inocybe canesc<strong>en</strong>s J. Favre; Inocybe favrei Bon;<br />

Inocybe geraniodora J. Favre; Inocybe lacera (Fr.)<br />

P. Kumm.; Inocybe spl<strong>en</strong>d<strong>en</strong>s var. phaeoleuca<br />

(Kühner) Kuyper; Inocybe subbrunnea Kühner;<br />

Inocybe taxocystis (J. Favre & E. Horak) S<strong>en</strong>n-<br />

Irlet; Inocybe umbr<strong>in</strong>odisca Kühner; Lactarius<br />

salicis-reticulatae Kühner; Peziza saniosa Schrad.;<br />

Russula subrub<strong>en</strong>s (J. E. Lange) Bon; Russula<br />

nana Killerm.<br />

Other Frequ<strong>en</strong>t species:<br />

Inocybe fraudans (Britzelm.) Sacc.; Inocybe<br />

godfr<strong>in</strong>ioides Kühner; Inocybe calamistrata (Fr.)<br />

Gillet; Inocybe nitidiuscula (Britzelm.) Lapl.;<br />

Tricholoma scalpturatum (Fr.) Quél.<br />

44.61 Mediterranean riparian poplar forests.<br />

(Habitat Natura 2000: 9240 Quercus fag<strong>in</strong>ea<br />

and Quercus canari<strong>en</strong>sis Iberian woods)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Helvella spadicea Schaeff.; Inocybe leucoblema<br />

Kühner; Lactarius controversus (Pers.) Pers.;<br />

Lecc<strong>in</strong>um nigellum Redeuilh; Pholiota populnea<br />

(Pers.) Kuyper & Tjall.-Beuk.; Tricholoma<br />

popul<strong>in</strong>um J. E. Lange.<br />

Frequ<strong>en</strong>t species:<br />

Lecc<strong>in</strong>um duriusculum (Schulzer ex Kalchbr.)<br />

S<strong>in</strong>ger; Morchella escul<strong>en</strong>ta (L.) Pers.; Pluteus<br />

cerv<strong>in</strong>us; Mitrophora semilibera (DC.) Lév.<br />

Ev<strong>en</strong> at this level it is possible to match the<br />

mycological data with the Natura Map (AAVV,<br />

2004; AAVV, 2009a; AAVV, 2009b) so as to obta<strong>in</strong><br />

distribution data for each species <strong>in</strong> their relative<br />

habitats.<br />

Fig. 11: Cluster analysis over 33 CORINE Biotopes categories, Fourth level and 975 species of macromycetes.<br />

33


2.3.3.4 CORINE Biotopes Fifth level<br />

Us<strong>in</strong>g the fifth level where possible, particularly<br />

relat<strong>in</strong>g to cat<strong>en</strong>al ecological series, it was possible<br />

to achieve a greater level of detail, especially<br />

regard<strong>in</strong>g the <strong>in</strong>terpretation of dune <strong>en</strong>vironm<strong>en</strong>ts,<br />

which, as also shown <strong>in</strong> figure 11, are significantly<br />

dist<strong>in</strong>ct from other habitats <strong>in</strong> terms of<br />

macromycete populations:<br />

16.211 Embryonic dunes (Habitat Natura 2000:<br />

2110 Embryonic shift<strong>in</strong>g dunes)<br />

Frequ<strong>en</strong>t species:<br />

Cyathus stercoreus (Schwe<strong>in</strong>.) De Toni; Diderma<br />

spumarioides (Fr.) Fr.; Geopora ar<strong>en</strong>osa (Fuckel)<br />

S. Ahmad; Pustularia patav<strong>in</strong>a (Cooke & Sacc.)<br />

Boud.; Psathyrella ammophila (Durieu & Lév.) P.<br />

D. Orton; Rhodocybe mal<strong>en</strong>çonii Pacioni & Lalli.<br />

16.212 Biscay grey dunes (Habitat Natura 2000:<br />

2120 Shift<strong>in</strong>g dunes along the shorel<strong>in</strong>e with<br />

Ammophila ar<strong>en</strong>aria “white dunes”)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Agaricus m<strong>en</strong>ieri Bon; Agrocybe pediades (Fr.)<br />

Fayod; Gyrodon lividus (Bull.) Fr.; Agaricus<br />

aridicola Geml, Geiser & Royse; Gyrophragmium<br />

delilei Mont.; Hygrocybe persist<strong>en</strong>s (Britzelm.)<br />

S<strong>in</strong>ger; Lepiota brunneolilacea Bon & Boiffard;<br />

Marasmius oreades (Bolton) Fr.; Melanoleuca<br />

c<strong>in</strong>ereifolia (Bon) Bon; Montagnea ar<strong>en</strong>aria (DC.)<br />

Zeller; Panaeolus c<strong>in</strong>ctulus (Bolton) Sacc.<br />

Other frequ<strong>en</strong>t species:<br />

Agrocybe pediades (Fr.) Fayod; Psathyrella<br />

ammophila (Durieu & Lév.) P. D. Orton; Peziza<br />

pseudoammophila Bon & Donad<strong>in</strong>i.<br />

16.221 Northern Atlantic grey dunes (Habitat<br />

Natura 2000: 2130 Fixed coastal dunes with<br />

herbaceous vegetation “grey dunes”, Priority)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Arrh<strong>en</strong>ia spathulata (Fr.) Redhead; Xerula<br />

mediterranea (Pacioni & Lalli) Quadr. & Lungh<strong>in</strong>i;<br />

Clitocybe barbularum (Romagn.) P. D. Orton;<br />

Rhizopogon roseolus (Corda) Th. Fr.; Tulostoma<br />

brumale Pers.<br />

Frequ<strong>en</strong>t species:<br />

Geopora ar<strong>en</strong>osa (Fuckel) S. Ahmad; Hebeloma<br />

ammophilum Bohus.<br />

34<br />

16.223 Ibero-Mediterranean grey dunes<br />

(Habitat Natura 2000: 2210 Crucianellion<br />

maritimae fixed beach dunes)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Marasmius anomalus Peck; Peziza boltonii Quél.;<br />

Galer<strong>in</strong>a laevis (Pers.) S<strong>in</strong>ger; Arrh<strong>en</strong>ia retiruga<br />

(Bull.) Redhead; Clitocybe barbularum (Romagn.)<br />

P. D. Orton; Gymnopus aquosus (Bull.) Antonín &<br />

Noordel.; Conocybe blattaria (Fr.) Kühner;<br />

Conocybe leucopus Kühner ex Kühner & Watl<strong>in</strong>g;<br />

Conocybe rick<strong>en</strong>iana P. D. Orton; Copr<strong>in</strong>us<br />

xanthothrix Romagn.; Cr<strong>in</strong>ipellis scabella (Alb. &<br />

Schwe<strong>in</strong>.) Murrill; Hydnocystis piligera Tul.;<br />

Hygrocybe conica (Schaeff.) P. Kumm.; Mucilago<br />

crustacea P. Micheli ex F. H. Wigg.; Octospora<br />

leucoloma Hedw.; Pachyella celtica (Boud.)<br />

Häffner; Peziza varia (Hedw.) Fr.<br />

Frequ<strong>en</strong>t species:<br />

Agrocybe pediades (Fr.) Fayod; Cyathus olla<br />

(Batsch) Pers.; Peziza pseudoammophila Bon &<br />

Donad<strong>in</strong>i; Volvariella gloiocephala (DC.)<br />

Boekhout & Enderle.<br />

2.3.4 Discussion<br />

Mycological communities, as can be se<strong>en</strong> <strong>in</strong> fig. 11<br />

are far more differ<strong>en</strong>tiated than the natural habitats<br />

<strong>in</strong> which they reside; this can also be se<strong>en</strong> <strong>in</strong> the<br />

specificity of the relationships betwe<strong>en</strong> plants and<br />

fungi.<br />

The CORINE Land Cover system, by us<strong>in</strong>g wider<br />

units to classify vegetation, simplifies l<strong>in</strong>k<strong>in</strong>g<br />

species to habitats and <strong>en</strong>ables the use of a greater<br />

volume of <strong>in</strong>formation; This r<strong>en</strong>ders ecological and<br />

biogeographical analyses less detailed, but it also<br />

allows us to create a map on a scale of 1:100,000<br />

for the <strong>en</strong>tire Italian territory which is comparable<br />

to analogous territorial analyses at a European<br />

level.<br />

The CORINE Biotopes system, <strong>in</strong>stead, makes<br />

possible a connection to the national project called<br />

“Carta della Natura” (Nature Map) (AAVV, 2004;<br />

AAVV, 2009a; AAVV, 2009b), which is itself useful<br />

for determ<strong>in</strong><strong>in</strong>g the real distribution of<br />

macromycetes but which could also be used to map<br />

out the pot<strong>en</strong>tial distribution of fungal species.<br />

The availability of data regard<strong>in</strong>g mycological<br />

diversity <strong>in</strong> the CORINE Biotopes and EUNIS<br />

categories also allows us to gather more useful


<strong>in</strong>formation for a full evaluation of habitat diversity<br />

and the vulnerability of these habitats.<br />

Dur<strong>in</strong>g the creation of the mycological datacards,<br />

available from ISPRA, several fundam<strong>en</strong>tal<br />

guidel<strong>in</strong>es for their use <strong>in</strong> high-level CORINE and<br />

EUNIS classification schemes were established.<br />

Beyond the data normally conta<strong>in</strong>ed <strong>in</strong> mycological<br />

datacards, it was found to be ess<strong>en</strong>tial to:<br />

• For mixed consortia, besides the<br />

dom<strong>in</strong>ant plant species, state the codom<strong>in</strong>ant<br />

ones also, both <strong>in</strong> the canopy,<br />

and the shrub layer and ground cover.<br />

Usually, three or four species are<br />

suffici<strong>en</strong>t to id<strong>en</strong>tify the habitat.<br />

• Increase as far as possible the site<br />

<strong>in</strong>formation with geological substrata<br />

<strong>in</strong>formation, height and geographic<br />

location (WGS 84 for the Carta della<br />

Natura and CORINE Land Cover).<br />

• For garigue and mediterranean<br />

undergrowth formations, <strong>in</strong>dicate the<br />

height of natural surface levels, as the<br />

CORINE Biotopes and EUNIS categories<br />

dist<strong>in</strong>guish betwe<strong>en</strong> high undergrowth<br />

(>3m) low undergrowth (1-3 m) and<br />

garigue (< 1 m).<br />

• For conifers, it is ess<strong>en</strong>tial to establish<br />

whether they are <strong>in</strong> a natural forest or a<br />

reforestation (<strong>in</strong> the latter case, check<br />

whether the <strong>in</strong>stallation was done with<br />

native or ali<strong>en</strong> species). For this type of<br />

analysis prior knowledge of the natural<br />

formations <strong>in</strong> the analysed area is<br />

necessary.<br />

2.4 Mushrooms as a soil quality<br />

bio<strong>in</strong>dicator<br />

2.4.1 Introduction<br />

2.4.1.1 The quality of the soil-system<br />

The <strong>en</strong>vironm<strong>en</strong>tal quality of an area or territory<br />

can be estimated by the use of effective <strong>in</strong>dicators<br />

whereby these <strong>in</strong>dicators are designated as<br />

<strong>in</strong>strum<strong>en</strong>ts capable of repres<strong>en</strong>t<strong>in</strong>g particular<br />

<strong>en</strong>vironm<strong>en</strong>tal conditions.<br />

The quality of a selected <strong>en</strong>vironm<strong>en</strong>tal system<br />

cannot be described by one <strong>in</strong>dicator alone, but<br />

usually needs a comb<strong>in</strong>ation of differ<strong>en</strong>t <strong>in</strong>dicators<br />

which work over differ<strong>en</strong>t scales and which<br />

therefore each have a differ<strong>en</strong>t weight <strong>in</strong> the overall<br />

analysis (B<strong>en</strong>edetti et al., 2006).<br />

A good <strong>in</strong>dicator needs to have certa<strong>in</strong> characteristics<br />

that guarantee repres<strong>en</strong>tativity, accessibility,<br />

trustworth<strong>in</strong>ess and operability. Each <strong>in</strong>dicator has<br />

to furthermore guarantee a certa<strong>in</strong> level of political<br />

relevance and utility, analytical validity and<br />

measurability (OECD, 1999).<br />

The need of turn<strong>in</strong>g to synthetic <strong>in</strong>dicators to<br />

establish soil quality stems from the fact that, be<strong>in</strong>g<br />

a very complex system, oft<strong>en</strong>, through objective<br />

difficulties <strong>in</strong> its measurem<strong>en</strong>t, its importance t<strong>en</strong>ds<br />

to be overlooked. This has led to a decrease of over<br />

10% <strong>in</strong> the productive capacity of cultivated land<br />

worldwide s<strong>in</strong>ce the early ‘80s as soil erosion,<br />

pollution, aggressive modern farm<strong>in</strong>g methods,<br />

graz<strong>in</strong>g, salification and, above all, desertification<br />

due to the loss of organic substances and<br />

biodiversity all take their toll.<br />

Among the various def<strong>in</strong>itions of soil quality, one<br />

of the most widely-accepted is that of Doran and<br />

Park<strong>in</strong> (1994) who def<strong>in</strong>ed it as “the ability of soil<br />

to <strong>in</strong>teract with the ecosystem to ma<strong>in</strong>ta<strong>in</strong><br />

biological productivity, <strong>en</strong>vironm<strong>en</strong>tal quality and<br />

to promote plant and animal health”. In reality,<br />

many sci<strong>en</strong>tists l<strong>in</strong>k soil quality with a fundam<strong>en</strong>tal<br />

conceptual place <strong>in</strong> regards to territorial plann<strong>in</strong>g<br />

and company managem<strong>en</strong>t, add<strong>in</strong>g the vocational<br />

concept of “fit for” to it and th<strong>en</strong> focus<strong>in</strong>g<br />

primarily on what the soil will be used for.<br />

From <strong>in</strong>spection of the sci<strong>en</strong>tific literature on the<br />

subject one quickly notes that there is no s<strong>in</strong>gle<br />

parameter or universal <strong>in</strong>dicator capable of def<strong>in</strong><strong>in</strong>g<br />

every s<strong>in</strong>gle situation or <strong>en</strong>vironm<strong>en</strong>tal pressure;<br />

<strong>in</strong>stead, each time a situation arises it is necessary<br />

to determ<strong>in</strong>e the most appropriate parameters to<br />

measure that particular <strong>en</strong>vironm<strong>en</strong>t, which,<br />

afterwards may be used to monitor the state of the<br />

soil under its new use (Doran et al., 1994).<br />

In the Mediterranean area, which is at risk of<br />

desertification ow<strong>in</strong>g to the marked loss of organic<br />

substances and biodiversity of its soil, bio<strong>in</strong>dicators<br />

– those liv<strong>in</strong>g organisms that can be used as <strong>en</strong>vironm<strong>en</strong>tal<br />

<strong>in</strong>dicators – are of particular importance.<br />

Beyond the traditional exist<strong>en</strong>ce of “<strong>in</strong>dex species”,<br />

which underl<strong>in</strong>e the necessity of hav<strong>in</strong>g systems of<br />

<strong>in</strong>dicators at diverse trophic levels to obta<strong>in</strong> precise<br />

answers from such complex objects as the<br />

35


Mediterranean soil, there is now the need to replace<br />

this with a concept of ecosystem functionality and<br />

to employ those organisms or <strong>in</strong>dicators that can<br />

tell us someth<strong>in</strong>g about how regularly an ecological<br />

system is carry<strong>in</strong>g out its role or how much an<br />

ecological function is slow<strong>in</strong>g down or accelerat<strong>in</strong>g<br />

<strong>in</strong> response to <strong>en</strong>vironm<strong>en</strong>tal or anthropic<br />

pressures.<br />

Of particular usefulness to <strong>en</strong>vironm<strong>en</strong>tal sci<strong>en</strong>tists<br />

are biochemical <strong>in</strong>dicators that describe the<br />

metabolic processes at work <strong>in</strong> the soil and,<br />

therefore, provide a summary of how well-work<strong>in</strong>g<br />

nutritional cycles are. We can discover this<br />

<strong>in</strong>formation by look<strong>in</strong>g at the dosage of molecules<br />

or process-mark<strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> them.<br />

This is the case, for example, for the determ<strong>in</strong>ation<br />

of soil respiration by measur<strong>in</strong>g the CO 2 flows,<br />

which def<strong>in</strong>e all aerobic processes <strong>in</strong> the soil and<br />

therefore govern the organic-matter m<strong>in</strong>eralization<br />

processes as well. Or, the determ<strong>in</strong>ation of<br />

<strong>en</strong>zymatic levels, which <strong>in</strong> addition to metabolic<br />

functions can impact g<strong>en</strong>etic diversity by<br />

repres<strong>en</strong>t<strong>in</strong>g the ph<strong>en</strong>otypic expression of one<br />

produc<strong>in</strong>g organism rather than another.<br />

2.4.1.2 Soil ecology<br />

Soil is <strong>in</strong> a close relationship with the plants it<br />

supports and thereby forms a unique ecosystem<br />

with these and other microorganisms. Its fertility is<br />

<strong>in</strong> fact def<strong>in</strong>ed as the capacity of the soil to r<strong>en</strong>der<br />

crops productive. Normally we speak about<br />

chemical fertility (the sum of nutritional <strong>elem<strong>en</strong>ts</strong><br />

capable of be<strong>in</strong>g absorbed by crops), physical<br />

fertility (structure, terra<strong>in</strong> consist<strong>en</strong>cy, etc.) and<br />

biological fertility (Bloem et al., 2006).<br />

The concept of biological fertility, however, has<br />

only really be<strong>en</strong> established over the last 20 years;<br />

its aim has usually be<strong>en</strong> to characterise soil<br />

metabolism and microbic turnover.<br />

The function of microorganisms <strong>in</strong> the soil is multifaceted.<br />

It is expressed <strong>in</strong> both pedog<strong>en</strong>ic processes<br />

and <strong>in</strong> the regulation of nutri<strong>en</strong>t cycles, and thus <strong>in</strong><br />

plant nutrition. Microorganisms are <strong>in</strong>volved <strong>in</strong> the<br />

m<strong>in</strong>eralisation of organic matter, <strong>in</strong> the synthesis of<br />

nitrog<strong>en</strong>, <strong>in</strong> the formation of humus and also<br />

impact the mobilisation of m<strong>in</strong>eral <strong>elem<strong>en</strong>ts</strong><br />

(Lavelle et al., 2001).<br />

The soil, however, is also an extremely vital <strong>en</strong>tity<br />

and as such parallel studies have be<strong>en</strong> carried out<br />

aim<strong>in</strong>g to understand the synergistic and<br />

competitive relationships betwe<strong>en</strong> microorganisms<br />

36<br />

and mycorrhizae/carpophores <strong>in</strong> diverse<br />

pedological situations (Ste<strong>in</strong>aker et al., 2008).<br />

Rec<strong>en</strong>tly soil fauna has be<strong>en</strong> the object of careful<br />

research and correlations betwe<strong>en</strong> their pres<strong>en</strong>ce<br />

and the developm<strong>en</strong>t of fungal fruit<strong>in</strong>g bodies has<br />

started to emerge. For example, to guarantee the<br />

normal developm<strong>en</strong>t of a Tuber ascocarp, that<br />

organism needs to absorb the nutritional substances<br />

– <strong>in</strong> particular, small organic molecules and<br />

m<strong>in</strong>eral salts – from a land mass which is fairly rich<br />

<strong>in</strong> humus and which is equal to around double the<br />

average range of the truffle (Granetti et al., 2005).<br />

This volume of earth, unfortunately, cannot be<br />

explored by the strands of hyphae that are formed<br />

by the ascocarp because they are of <strong>in</strong>suffici<strong>en</strong>t<br />

l<strong>en</strong>gth. Instead, to facilitate nutrition, truffles take<br />

advantage of the soil microfauna, the biological<br />

activity of which <strong>en</strong>sures a cont<strong>in</strong>uous supply of<br />

nutri<strong>en</strong>ts to the immediate vic<strong>in</strong>ity of the<br />

carpophore. Ev<strong>en</strong> the relationships betwe<strong>en</strong><br />

ectomycorrhizal hyphae and soil fauna, <strong>in</strong>clud<strong>in</strong>g<br />

the relation betwe<strong>en</strong> the various biotic compon<strong>en</strong>ts<br />

and their pot<strong>en</strong>tial function as <strong>in</strong>dicators, have be<strong>en</strong><br />

exam<strong>in</strong>ed <strong>in</strong> detail dur<strong>in</strong>g research <strong>in</strong>to the most<br />

precious Tuber species (Callot et al., 1999). These<br />

studies analysed the roles and relationships<br />

betwe<strong>en</strong> the various compon<strong>en</strong>ts and established<br />

new foundations for future experim<strong>en</strong>tation on soil<br />

bio<strong>in</strong>dication.<br />

The term microfauna of the soil, <strong>in</strong> its widest<br />

s<strong>en</strong>se, <strong>in</strong>cludes a complex series of animal species<br />

of vary<strong>in</strong>g shape, dim<strong>en</strong>sion and role. Species with<br />

<strong>in</strong>dividuals betwe<strong>en</strong> 0.01 and 0.2 mm fall <strong>in</strong>to this<br />

category: protozoa that m<strong>in</strong>eralize nitrog<strong>en</strong>,<br />

phosphorus and sulphur, mak<strong>in</strong>g easily absorbed<br />

nutritional substances available to hyphae; and<br />

nematodes that feed on bacteria, protozoa and<br />

fungal hyphae and are <strong>in</strong>volved <strong>in</strong> the<br />

decomposition of underground carpophores<br />

(Lavelle et al., 2001; Callot et al., 1999).<br />

The mesofauna consists of animal species measur<strong>in</strong>g<br />

from 0.2 to 2 mm, mostly mites and ticks,<br />

other microarthropods (protura, diplura, symphyla,<br />

pauropoda, pseudoscorpions, etc.), and<br />

<strong>en</strong>chytraeidic annelids (oligochaetes), which<br />

display some of the most diverse and specialised<br />

eat<strong>in</strong>g habits around (Lavelle et al., 2001; Siepel,<br />

1994); many microfitofagous and detritivorous<br />

species feed on mycorrhizal hyphae and tufts of<br />

mycelium from carpophores. Their catabolites (rich<br />

<strong>in</strong> undigested fungal hyphae) are a food source for<br />

earthworms (annellids) and nutritional hyphae of<br />

fungal species (Callot et al., 1999), the spores of


wich are <strong>in</strong>oculated <strong>in</strong> mesofauna fecal pellets,<br />

sometimes <strong>in</strong> organic and organo-m<strong>in</strong>eral<br />

compounds (Lavelle et al., 2001; Siepel, 1994),<br />

which have an <strong>en</strong>ormous positive effect on the<br />

growth rates of fungal hyphae.<br />

Macrofauna <strong>in</strong>cludes all <strong>in</strong>dividuals larger than<br />

2 mm; among others earthworms, snails, isopods,<br />

spiders, opiliones, chilopoda (c<strong>en</strong>tipedes),<br />

diplopoda (millipedes) and many <strong>in</strong>sects, mostly<br />

larvae and adult beetles, flies, termites and ants.<br />

These organisms contribute to vary<strong>in</strong>g degrees<br />

towards decomposition and vertical and horizontal<br />

remix<strong>in</strong>g of organic matter, which can be of<br />

vegetable, animal or fungal orig<strong>in</strong> (Lavelle et al.,<br />

2001; M<strong>en</strong>ta, 2008).<br />

The function fulfilled by earthworms takes on<br />

particular relevancy, where, by feed<strong>in</strong>g on organic<br />

fragm<strong>en</strong>ts, the excretions of mites and ticks and<br />

m<strong>in</strong>eral particles, they produce catabolites of<br />

around 1 mm <strong>in</strong> size, surrounded by a mucus-like<br />

<strong>in</strong>test<strong>in</strong>al material (Lavelle et al., 2001; Lavelle,<br />

1997), which are easily and quickly colonised by<br />

the nutritional hyphae of the fungal species. The<br />

fungi also derive great b<strong>en</strong>efits from the aeration<br />

produced by the tunnels these earthworms dig,<br />

which can be up to 2.5 metres deep. Ev<strong>en</strong> ants<br />

provide soil aeration with their tunnels, which can<br />

be at depths of 70-80 cm, but their most important<br />

function is the mov<strong>in</strong>g of material accumulated<br />

dur<strong>in</strong>g the excavation of tunnels from lower strata<br />

towards the surface and thus elim<strong>in</strong>at<strong>in</strong>g the<br />

negative impact of ra<strong>in</strong>water runoff on nutri<strong>en</strong>ts.<br />

(Granetti et al., 2005).<br />

2.4.2 Mushrooms as <strong>in</strong>dicators<br />

2.4.2.1 <strong>mushrooms</strong> as <strong>in</strong>dicators of particular<br />

soil characteristics<br />

Mushrooms may assume the role of bio<strong>in</strong>dicators<br />

<strong>in</strong> a giv<strong>en</strong> ecosystem. In particular we should<br />

underl<strong>in</strong>e the <strong>en</strong>ormous contribution to this<br />

situation made by the studies carried out over the<br />

last 40 years on valuable truffles (ectomycorrhizal<br />

species) to achieve a proper artificial cultivation<br />

and production of them.<br />

Analysis of soil characteristics (profile, particle<br />

size, pH, cont<strong>en</strong>t of m<strong>in</strong>erals, <strong>in</strong>clud<strong>in</strong>g trace<br />

<strong>elem<strong>en</strong>ts</strong>, organic compon<strong>en</strong>t, macro and micro<br />

porosity) have provided a database that is help<strong>in</strong>g<br />

to shed light on the complex relationships betwe<strong>en</strong><br />

soil and fungi. Investigations based on ecological<br />

study <strong>in</strong> artificial ecosystems have shown that some<br />

fungi can be id<strong>en</strong>tified as <strong>in</strong>dicators of undisturbed<br />

natural forests and can demonstrate the degree of<br />

trunk decomposition (Holmer, 1997). Accord<strong>in</strong>g to<br />

these authors, however, studies of fungal<br />

propagation should consider all the mycelium and<br />

not only the fruit<strong>in</strong>g bodies, which constitute a<br />

m<strong>in</strong>or part <strong>in</strong> the vegetative body of a fungus. In<br />

g<strong>en</strong>eral, epigean and hypogean fungi and other<br />

microorganisms that colonise the humic layer of<br />

soil t<strong>en</strong>d to prefer acid or sub-alkal<strong>in</strong>e reactant<br />

substrates; alternatively they t<strong>en</strong>d to be resistant to<br />

thermal stress and stresses deriv<strong>in</strong>g from water. It<br />

is not by chance that microbial taxonomy splits<br />

organisms <strong>in</strong>to groups that demonstrate such<br />

characteristics as be<strong>in</strong>g thermophilic, cryophilic or<br />

alkaphilic, accord<strong>in</strong>g to whether they need to exist<br />

at very high temperatures or <strong>in</strong> places with near<br />

eternal snowfall or <strong>in</strong> ground with sub-alkal<strong>in</strong>e pH.<br />

Mushrooms t<strong>en</strong>d to grow <strong>in</strong> soils with vary<strong>in</strong>g pH<br />

levels, from sub-alkal<strong>in</strong>e to subacid, although many<br />

species prefer soil of around pH 7. Studies on the<br />

pH of natural soils conducted <strong>in</strong> differ<strong>en</strong>t wooded<br />

areas showed a range of levels from 4.8 to 8 with<br />

an optimal value of 7.2 found <strong>in</strong> woods with gre<strong>en</strong><br />

cover <strong>in</strong> excell<strong>en</strong>t health with no loss of branches<br />

and/or leaves. The pH of these forest floors is<br />

affected by the number of trees per hectare and the<br />

type of vegetation cover of the soil (Bersan, com.<br />

pers., 2002).<br />

Research carried out to <strong>in</strong>crease knowledge and<br />

improve cultivation of the ecological characteristics<br />

of hypogeous fungi, especially the precious tuber<br />

varieties, showed soil pH levels rang<strong>in</strong>g from 7 to<br />

8.3 dep<strong>en</strong>d<strong>in</strong>g on the species studied (Granetti,<br />

1994).<br />

In g<strong>en</strong>eral, Tuber ascocarps have improved growth<br />

wh<strong>en</strong> their hyphae live <strong>in</strong> micro-<strong>en</strong>vironm<strong>en</strong>ts with<br />

a pH 6.0, while other ectomycorrhiza develop best<br />

<strong>in</strong> substrates that range from subalkal<strong>in</strong>e to alkal<strong>in</strong>e<br />

(from pH 7 to over 8) (Granetti et al., 2005).<br />

Various studies carried out on naturally occurr<strong>in</strong>g<br />

Tuber sites have demonstrated the follow<strong>in</strong>g<br />

characteristics for the differ<strong>en</strong>t species:<br />

1. T. melanosporum Vittad. (Fig. 12) usually<br />

prefers richly skeletal soil with the rema<strong>in</strong><strong>in</strong>g<br />

parts made up of f<strong>in</strong>e soil (sandy-loam<br />

texture). The pH is very uniform and has an<br />

average of 8.0 ± 0.4 pH (hav<strong>in</strong>g extremes of<br />

5.7 and 8.25). Most of the soils studied <strong>in</strong><br />

three regions of c<strong>en</strong>tral Italy have a pH of<br />

around 8, and an average skeleton of 52% <strong>in</strong><br />

37


38<br />

Abruzzo, 54% <strong>in</strong> Lazio and 52% <strong>in</strong> Umbria (B<strong>en</strong>civ<strong>en</strong>ga et al., 1990 ).<br />

Fig. 12. Tuber melanosporum Vitt. (Prized black truffle from Norcia) (Photo: AMB – CSM Archives).<br />

2. For T. aestivum Vittad. (Fig. 13) the soil is<br />

19 cm deep on average, with a soil skeleton<br />

made of limestone (20%) and f<strong>in</strong>e earth<br />

(80%); of which 16% is sand, 56% silt and<br />

28% clay. The pH is 7.7 on average<br />

(B<strong>en</strong>civ<strong>en</strong>ga et al., 1996).2.<br />

Fig. 13. Tuber aestivum Vitt. (Summer truffle or scorzone) (Photo: AMB – CSM Archives),<br />

3. T. aestivum Vittad. f. unc<strong>in</strong>atum (Chat<strong>in</strong>)<br />

Montecchi & Borelli 1 ; prefers soil on average<br />

28 cm deep, with a skeleton consist<strong>in</strong>g of 10%<br />

limestone and the rema<strong>in</strong><strong>in</strong>g 90% f<strong>in</strong>e earth<br />

4. T. mes<strong>en</strong>tericum Vittad., on average, is<br />

found <strong>in</strong> soil deeper than 30 cm, soft or<br />

compacted, as <strong>in</strong> road cutt<strong>in</strong>gs where<br />

macadam limestone with a neutral or subalkal<strong>in</strong>e<br />

pH accumulates (Pal<strong>en</strong>zona et al.,<br />

1976). Other studies <strong>in</strong> Irp<strong>in</strong>ia (Campania)<br />

found it <strong>in</strong> sandy-loam soil with low levels of<br />

(28% sand, 56% silt and 47% clay). The pH<br />

varies from 7.0 to 7.8 with diverse amounts of<br />

organic matter (B<strong>en</strong>civ<strong>en</strong>ga et al., 1996).<br />

soil skeleton and greater perc<strong>en</strong>tages of<br />

limestone [which almost always <strong>en</strong>sures a pH<br />

close to neutral (7.7)] and <strong>in</strong> some cases, the<br />

pH drops to subacid levels (B<strong>en</strong>civ<strong>en</strong>ga et al.,<br />

1996).<br />

1 This taxonomic <strong>en</strong>tity is recorded as a variety (described <strong>in</strong> 1998 by Ian R. Hall, Peter Buchanan, Wang Yun and Anthony L.J. Cole), referred to<br />

and recorded <strong>in</strong> the CABI (Commonwealth Agricultural Bureaux International) “Index Fungorum” database (RecordID = 318194)<br />

(http://www.<strong>in</strong>dexfungorum.org). After appropriate evaluation, we prefer to classify this <strong>en</strong>tity as a form, as suggested by Montague & Borelli <strong>in</strong><br />

1995 and <strong>in</strong> (Montecchi et al., 2000).


5. T. magnatum Pico (Fig. 14) can be found <strong>in</strong><br />

deep soil with a poor skeleton but rich <strong>in</strong> silt<br />

and clay, which make up a skeleton of 68.4%.<br />

pH levels are close to 8 and vary little<br />

(B<strong>en</strong>civ<strong>en</strong>ga et al., 1988).<br />

Fig. 14. Tuber magnatum Pico (Prized white truffle from Alba) (Photo: AMB – CSM Archives).<br />

6. T. borchii Vittad.; is found <strong>in</strong> soil with an<br />

average skeleton of 31.7%, the rema<strong>in</strong>der<br />

be<strong>in</strong>g on average 66.3% sand, 23.2% silt, and<br />

13.2% clay. The pH varies from 7.5 to 8.0<br />

with average values of 7.6 (Giovagnotti et al.,<br />

1999).<br />

2.4.2.2 Mushrooms as <strong>in</strong>dicators of ongo<strong>in</strong>g<br />

degradation<br />

Some fungal species, by their mere pres<strong>en</strong>ce and<br />

quantity, <strong>in</strong>dicate a curr<strong>en</strong>t imbalance <strong>in</strong> the<br />

ecosystem and can predict other detectable forms<br />

of degradation <strong>in</strong> advance. A fungal species pres<strong>en</strong>t<br />

on the woody rema<strong>in</strong>s and an <strong>in</strong>dicator of<br />

significant amounts of nitrog<strong>en</strong> <strong>in</strong> the substrate is<br />

Megacollybia platyphylla (Pers.) Kotl. & Pouzar,<br />

which, by its <strong>in</strong>tr<strong>in</strong>sic characteristic of act<strong>in</strong>g on<br />

large surfaces with its mycelial cords and<br />

produc<strong>in</strong>g basidiomycetes directly on these<br />

surfaces (Fig. 15), is considered a good <strong>in</strong>dicator of<br />

ongo<strong>in</strong>g forest degradation.<br />

In these cases, the g<strong>en</strong>etic and functional ranges of<br />

fungi provide a large number of species, which<br />

<strong>in</strong>dicate large ecosystem suffer<strong>in</strong>g due to excessive<br />

dead biomass (necromass). We note, among others,<br />

Cerr<strong>en</strong>a unicolor (Bull. : Fr.) Murr., Coriolopsis<br />

gallica Fr. and Trametes trogii Berk., the spores of<br />

which precede the hyphal <strong>en</strong>trance of Megacollybia<br />

platyphylla (Pers. : Fr.) Kotlaba & Pouzar (Bersan,<br />

com. pers., 2002). Ev<strong>en</strong> Clitocybe phaeophthalma<br />

(Pers.) Kuyper is an <strong>in</strong>dicator species, suggest<strong>in</strong>g<br />

excessive amounts of nitrog<strong>en</strong> <strong>in</strong> the substrate, but<br />

unlike Megacollybia platyphylla it has manifold<br />

functions and so its pres<strong>en</strong>ce needs to be evaluated<br />

on a case-by-case basis. For example, an<br />

accumulation of substrate <strong>in</strong> a place with stagnant<br />

water and low v<strong>en</strong>tilation, related to a number of<br />

C. phaeophtalma fruit<strong>in</strong>g bodies, may <strong>in</strong>dicate the<br />

decay of plants <strong>in</strong> the area circumscribed by the<br />

basidiomycetes as the excess necromass <strong>in</strong>hibits the<br />

recycl<strong>in</strong>g processes related to other species of fungi<br />

(Bersan, com. pers., 2002).<br />

39


40<br />

Fig. 15. Rhizomorphs of Megacollybia platyphylla (Pers.: Fr.) Kotl. & Pouzar, with fruit<strong>in</strong>g bodies highlighted (Photo: C. S<strong>in</strong>iscalco).<br />

Other species of gasteroid fungi (Saras<strong>in</strong>i, 2005),<br />

belong<strong>in</strong>g to diverse families (Phallaceae Corda,<br />

Lycoperdaceae Corda, Clathraceae E. Fisch.) are<br />

also <strong>in</strong>dicators of ongo<strong>in</strong>g decay processes: for<br />

2.4.2.3 Mushrooms as <strong>in</strong>dicators of future decay<br />

activites<br />

There are species which, with their fruit<strong>in</strong>g bodies,<br />

by feed<strong>in</strong>g on the by-products of other fungal<br />

species (primary degraders) <strong>in</strong>dicate ecosystem<br />

changes that will only be perceivable to us <strong>in</strong> the<br />

distant future (wh<strong>en</strong> these primary degraders, with<br />

their long cycles, fruit).<br />

Ow<strong>in</strong>g to characteristics connected to their<br />

biological cycle, several species of the g<strong>en</strong>us<br />

Myc<strong>en</strong>a (Pers.) Roussel have this predictive<br />

Fig. 16. Clathrus ruber P. Micheli ex Pers. (Photo: C. S<strong>in</strong>iscalco).<br />

example, Mut<strong>in</strong>us can<strong>in</strong>us (Huds. : Pers.) Fr.,<br />

Lycoperdon pyriforme Schaeff. : Pers., Clathrus<br />

ruber Micheli : Pers. (Fig. 16) (Bersan, com. pers.,<br />

2002).<br />

capacity (Robich, 2003): Myc<strong>en</strong>a rosea (Schumac.)<br />

Gramberg; Myc<strong>en</strong>a pura (Pers. : Fr.) P. Kumm.;<br />

Myc<strong>en</strong>a pelianth<strong>in</strong>a (Fr.) Quél.; Myc<strong>en</strong>a<br />

galericulata (Scop. : Fr.) Gray; Prunulus niveipes<br />

Murril [S<strong>in</strong>. Myc<strong>en</strong>a niveipes (Murrill) Murrill];<br />

Myc<strong>en</strong>a polygramma (Bull. : Fr.) Gray; Myc<strong>en</strong>a<br />

amicta (Fr.) Quél.; Myc<strong>en</strong>a flavoalba (Fr.) Quél.<br />

Myc<strong>en</strong>a rosea has established itself as an excell<strong>en</strong>t<br />

<strong>in</strong>dicator of biodegradation caused by primary<br />

fungal ag<strong>en</strong>ts (Fig. 17) (Bersan, com. pers., 2002).


2.4.2.3 Mushrooms as <strong>in</strong>dicators of habitat<br />

diversity<br />

Organisms capable of <strong>in</strong>dicat<strong>in</strong>g biological<br />

diversity <strong>in</strong> terms of richness and population<br />

abundance are very important for the understand<strong>in</strong>g<br />

and conservation of ecosystems. Ev<strong>en</strong> <strong>mushrooms</strong>,<br />

th<strong>en</strong>, can be used <strong>in</strong> the study and monitor<strong>in</strong>g of<br />

biodiversity of an ecosystem or an <strong>en</strong>vironm<strong>en</strong>t<br />

(B<strong>en</strong>edetti et al., 2006).<br />

Regard<strong>in</strong>g mycological <strong>elem<strong>en</strong>ts</strong>, several studies<br />

were conducted by APAT (today the ISPRA) as of<br />

2003 to build databases <strong>in</strong> collaboration with the<br />

Associazione Micologica Bresadola, C<strong>en</strong>tro Studi<br />

Micologici (AMB. - CSM), who have the mandate<br />

to conduct the first stages of habitat-l<strong>in</strong>k<strong>in</strong>g<br />

betwe<strong>en</strong> the nationally-recognised habitats to their<br />

CORINE Biotopes and Natura 2000 equival<strong>en</strong>ts<br />

(S<strong>in</strong>iscalco, 2008; 2009).<br />

As an example of a similar activity, we can cite the<br />

prelim<strong>in</strong>ary analysis conducted on some habitats of<br />

European importance that has allowed for certa<strong>in</strong><br />

guide species to be id<strong>en</strong>tified for dune<br />

<strong>en</strong>vironm<strong>en</strong>ts (Bianco et al., 2009).<br />

Species lists for each habitat have be<strong>en</strong> created.<br />

These are based on available national data and are<br />

made accord<strong>in</strong>g to the frequ<strong>en</strong>cy of occurr<strong>en</strong>ce of<br />

each species.<br />

Characteristic and differ<strong>en</strong>tial species have<br />

emerged wh<strong>en</strong> compar<strong>in</strong>g their pres<strong>en</strong>ce and<br />

frequ<strong>en</strong>cy with other habitats; frequ<strong>en</strong>t species are<br />

those with high levels of occurr<strong>en</strong>ce, but also<br />

pres<strong>en</strong>t <strong>in</strong> other habitats. These species (n. =177)<br />

repres<strong>en</strong>t an <strong>in</strong>itial sampl<strong>in</strong>g of precious ecological<br />

<strong>elem<strong>en</strong>ts</strong> and <strong>en</strong>vironm<strong>en</strong>tal quality <strong>in</strong>dicators<br />

(Bianco et al., 2009).<br />

Fig. 17. Myc<strong>en</strong>a rosea (Schumac.) Gramberg (Photo: AMB – CSM Archives).<br />

2.4.2.4 The trophic qualities of fungi as a key<br />

function of processes l<strong>in</strong>ked to soil fertility<br />

Mushrooms are <strong>in</strong>creas<strong>in</strong>gly becom<strong>in</strong>g a pr<strong>in</strong>cipal<br />

tool <strong>in</strong> land-quality monitor<strong>in</strong>g thanks to their<br />

specialised trophic activities which guarantee them<br />

a spot <strong>in</strong> all the national habitats.<br />

Mushrooms, along with bacteria and other<br />

microorganisms, <strong>en</strong>sure the catabolic degradation<br />

of organic substances so as to obta<strong>in</strong> simple<br />

molecules <strong>in</strong> the form of water, carbon dioxide and<br />

m<strong>in</strong>eral salts and also <strong>en</strong>sure the metabolic<br />

synthesis of complex organic and organom<strong>in</strong>eral<br />

molecules that are <strong>in</strong>volved <strong>in</strong> the formation of<br />

humus (Zanella et al., 2001).<br />

Therefore <strong>mushrooms</strong> and microorganisms play a<br />

fundam<strong>en</strong>tal role <strong>in</strong> guarantee<strong>in</strong>g soil fertility and<br />

<strong>in</strong> the abs<strong>en</strong>ce of which the soil would be simply an<br />

<strong>in</strong>ert mechanical support.<br />

Rec<strong>en</strong>t observation (Papetti, pers. comm.) seem to<br />

l<strong>en</strong>d weight to the hypothesis that <strong>in</strong> meadows and<br />

mounta<strong>in</strong>s, the pres<strong>en</strong>ce of fruit<strong>in</strong>g bodies of<br />

Hygrophoraceae (grass symbionts) is limited by<br />

excess nitrog<strong>en</strong> of m<strong>in</strong>eral and organic orig<strong>in</strong>. The<br />

reduction of anthropic nutrition seems th<strong>en</strong> to allow<br />

a return to the soil’s orig<strong>in</strong>al condition, probably<br />

because the mycelium caus<strong>in</strong>g mycorrhizal activity<br />

is not, <strong>in</strong> this case, perman<strong>en</strong>tly affected by<br />

nitrog<strong>en</strong> pollution of the soil.<br />

2.4.2.5 Mycorrhizal fungi as <strong>in</strong>dicators of plant<br />

health<br />

Ectomycorrhizae, besides be<strong>in</strong>g a physical barrier<br />

to the p<strong>en</strong>etration of parasites and be<strong>in</strong>g able to<br />

qualitatively and quantitatively change the<br />

metabolites released <strong>in</strong> the plant rhizosphere, also<br />

41


t<strong>en</strong>d to produce antibiotic compounds that repres<strong>en</strong>t<br />

a barrier aga<strong>in</strong>st many toxic soil microorganisms<br />

(Montecchio, 2008). Understand<strong>in</strong>g the mycorrhizal<br />

metabolism and its work<strong>in</strong>g mechanisms<br />

provides a number of bio<strong>in</strong>dication keys, giv<strong>en</strong> that<br />

the roots of an adult forest plant, normally, can<br />

simultaneously bear mycorrhizal fungi from 30 to<br />

50 differ<strong>en</strong>t species, each able to best develop only<br />

under certa<strong>in</strong> <strong>en</strong>vironm<strong>en</strong>tal, ph<strong>en</strong>ological and soil<br />

microclimate conditions (Koide et al. 2000).<br />

These new bio<strong>in</strong>dication resources allow us to say<br />

that mycorrhizae produc<strong>in</strong>g their fruit<strong>in</strong>g bodies,<br />

<strong>en</strong>able us to monitor their b<strong>en</strong>eficial effects on host<br />

42<br />

plants. For example, Rhizopogon v<strong>in</strong>icolor A. H<br />

Sm. confers greater resistance to drought to<br />

seedl<strong>in</strong>gs of Pseudotsuga m<strong>en</strong>ziesii (Mirbel.)<br />

Franco, while Laccaria lacquer (Scop.) Cooke<br />

shows greater resili<strong>en</strong>ce than Hebeloma<br />

crustul<strong>in</strong>iforme (Bull.) Quélet (Fig. 18), stay<strong>in</strong>g<br />

alive far longer than the plant itself after cutt<strong>in</strong>g<br />

(Parke et al., 1983).<br />

H. crustul<strong>in</strong>iforme shows better effici<strong>en</strong>cy <strong>in</strong> the<br />

nitrog<strong>en</strong> mobilization from prote<strong>in</strong>ous substances<br />

<strong>in</strong> Betula p<strong>en</strong>dula Roth than both Amanita<br />

muscaria (L.) Lam. (Fig. 19) and Paxillus <strong>in</strong>volutus<br />

(Batsch) Fr (Abuz<strong>in</strong>adah et al., 1989).<br />

Fig. 18. Hebeloma crustul<strong>in</strong>iforme (Bull.) Quél. (Photo: AMB – CSM Archives).<br />

Mycorrhizal communities are complex and many<br />

differ<strong>en</strong>t factors <strong>in</strong>flu<strong>en</strong>ce their dynamics <strong>in</strong> various<br />

ways, so that is not possible to speak of a s<strong>in</strong>gle<br />

“mycorrhizal effect”, but many associated effects.<br />

For example, there is a very complex syndrome<br />

that is usually designated with the g<strong>en</strong>eric term<br />

"deterioration". In rec<strong>en</strong>t years, “deterioration” has<br />

Fig. 19. Amanita muscaria (L. : Fr.) Hooker. (Photo: AMB – CSM Archives).<br />

be<strong>en</strong> <strong>in</strong>terpreted and evaluated accord<strong>in</strong>g to<br />

differ<strong>en</strong>t criteria ow<strong>in</strong>g to various studies on the<br />

mycorrhizal community. Research has demonstrated<br />

that the absorb<strong>in</strong>g roots of deteriorat<strong>in</strong>g trees<br />

oft<strong>en</strong> show significant variations <strong>in</strong> the make-up of<br />

mycorrhizal communities (Blaschke, 1994; Caus<strong>in</strong><br />

et al. 1996, Mosca et al., 2007). Oft<strong>en</strong>, the


symptoms of deterioration are observably more<br />

markedly <strong>in</strong> conditions wh<strong>en</strong> there is little water, or<br />

where the water is heavily sal<strong>in</strong>e, which means that<br />

these <strong>en</strong>vironm<strong>en</strong>tal factors can play a more<br />

relevant role than others <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the<br />

deterioration of the lesser resistant plant g<strong>en</strong>otypes<br />

(Schütt et al., 1985; Shi et al., 2002; Manion et al.,<br />

1992). In these cases, it has be<strong>en</strong> observed that the<br />

frequ<strong>en</strong>cy of some ectomycorrhizae is associated<br />

with plant health, thus mean<strong>in</strong>g that it may be<br />

possible to id<strong>en</strong>tify the level and <strong>in</strong>t<strong>en</strong>sity of plant<br />

deterioration, ev<strong>en</strong> <strong>in</strong> a prev<strong>en</strong>tative manner,<br />

through objective underground parameters. It has<br />

be<strong>en</strong> observed, <strong>in</strong> fact, that trees deteriorate<br />

gradually, progressively los<strong>in</strong>g their ability to<br />

select the most effici<strong>en</strong>t mycorrhizal symbionts and<br />

allow<strong>in</strong>g them to be replaced with those better<br />

adapted to the chang<strong>in</strong>g <strong>en</strong>vironm<strong>en</strong>tal conditions.<br />

The relative frequ<strong>en</strong>cy of ectomycorrhizal<br />

communities typically varies significantly betwe<strong>en</strong><br />

healthy and slightly/heavily deterioration po<strong>in</strong>ts,<br />

allow<strong>in</strong>g these communities to be used as<br />

bio<strong>in</strong>dicators of the pres<strong>en</strong>ce and degree of<br />

deterioration (Lilleskov et al. 2001; Loreau et al.,<br />

2001).<br />

2.4.2.6 The pres<strong>en</strong>ce of heavy metals <strong>in</strong><br />

<strong>mushrooms</strong>: a possible new <strong>in</strong>strum<strong>en</strong>t for soil<br />

bio<strong>in</strong>dication<br />

The ability of liv<strong>in</strong>g be<strong>in</strong>gs to exchange <strong>elem<strong>en</strong>ts</strong><br />

and substances creates an ecological cycle that will<br />

cont<strong>in</strong>ue until the sun's <strong>en</strong>ergy is no longer<br />

available, provided that no external factors with an<br />

<strong>in</strong>t<strong>en</strong>sity of disturbance exceed<strong>in</strong>g the homeostatic<br />

capacity of the <strong>in</strong>terested ecosystem are <strong>in</strong>troduced.<br />

The pres<strong>en</strong>ce of man on Earth has had a powerful<br />

impact on these natural cycles by artificially<br />

manipulat<strong>in</strong>g the chemical <strong>elem<strong>en</strong>ts</strong> of life and<br />

dispers<strong>in</strong>g <strong>in</strong> the <strong>en</strong>vironm<strong>en</strong>t synthetic and foreign<br />

(x<strong>en</strong>obiotic) substances that have already <strong>en</strong>tered<br />

the metabolic cycle of organisms (Ravera, 1981). A<br />

survey conducted by the American Chemical<br />

Registry found that over fourte<strong>en</strong> million differ<strong>en</strong>t<br />

chemicals are available on the world market and<br />

t<strong>en</strong> thousand new ones become available every<br />

week. The vast majority of these chemicals have<br />

be<strong>en</strong> (and are still be<strong>in</strong>g) released <strong>in</strong>to the<br />

<strong>en</strong>vironm<strong>en</strong>t and are <strong>in</strong>terfer<strong>in</strong>g with the balance of<br />

terrestrial ecosystems (Sequi, 1981; S<strong>in</strong>iscalco et<br />

al., 2002).<br />

For a long time it was considered that soil was able<br />

to reta<strong>in</strong> pollutants and very quickly damp<strong>en</strong> their<br />

harmful effects. Therefore more att<strong>en</strong>tion was paid<br />

to those <strong>en</strong>vironm<strong>en</strong>tal compartm<strong>en</strong>ts such as air or<br />

surface water resources where the effects of<br />

anthropog<strong>en</strong>ic pollution are more immediately<br />

obvious. The capacity of soil to accumulate<br />

pollutants can <strong>in</strong> fact prev<strong>en</strong>t immediate<br />

contam<strong>in</strong>ation of neighbour<strong>in</strong>g <strong>en</strong>vironm<strong>en</strong>tal<br />

assets, but it may also lead to a sudd<strong>en</strong> release of<br />

pollutants once ret<strong>en</strong>tion limits are exceeded<br />

(Gall<strong>in</strong>i, 2002).<br />

Mycelium <strong>in</strong> the soil is <strong>in</strong> direct contact with the<br />

external <strong>en</strong>vironm<strong>en</strong>t and can absorbe and<br />

accumulate heavy ions. These, <strong>in</strong> turn, may be<br />

transferred with<strong>in</strong> the cell. This ph<strong>en</strong>om<strong>en</strong>on<br />

occurs <strong>in</strong> differ<strong>en</strong>t ways across various fungal<br />

families and species. There have be<strong>en</strong> numerous<br />

studies over the past tw<strong>en</strong>ty years, particularly <strong>in</strong><br />

Europe, exam<strong>in</strong><strong>in</strong>g the pres<strong>en</strong>ce of heavy metals <strong>in</strong><br />

<strong>mushrooms</strong> and the results show heterog<strong>en</strong>eous<br />

behaviour betwe<strong>en</strong> species (S<strong>in</strong>iscalco et al., 2001).<br />

Many metals that are pres<strong>en</strong>t <strong>in</strong> trace amounts on<br />

earth are ess<strong>en</strong>tial for growth and reproduction of<br />

microorganisms. Differ<strong>en</strong>t conc<strong>en</strong>trations of heavy<br />

metals <strong>in</strong> soil affect the composition of fungal<br />

communities pres<strong>en</strong>t <strong>in</strong> the litter and soil (Onofri et<br />

al., 1999). In the last decade there has be<strong>en</strong> a<br />

grow<strong>in</strong>g conviction that the results of these studies<br />

require a ref<strong>in</strong>em<strong>en</strong>t of analysis so as to achieve the<br />

creation of a comparative tool, to be called the<br />

“refer<strong>en</strong>ce mushroom” (Cocchi et al., 2006). Wh<strong>en</strong><br />

such a refer<strong>en</strong>ce has be<strong>en</strong> developed for each<br />

species, this could help to shed light on the<br />

physiological function of chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong><br />

fungi; it will give us more <strong>in</strong>formation on<br />

bio<strong>in</strong>dication and taxonomic assessm<strong>en</strong>t and no<br />

less importantly, it will provide an estimate of the<br />

volume of heavy metals that are <strong>in</strong>gested through<br />

diet by man and other liv<strong>in</strong>g be<strong>in</strong>gs (Cocchi 2009).<br />

Refer<strong>en</strong>ce <strong>mushrooms</strong> are probably a very valid<br />

<strong>in</strong>strum<strong>en</strong>ts for evaluat<strong>in</strong>g soil biodiversity and the<br />

ecosystems which are connected to the soil (Petr<strong>in</strong>i<br />

et al., 2009).<br />

From a functional po<strong>in</strong>t of view the complex<br />

formed by hyphal emanations from ectotrophic<br />

mycorrhizae and its connected mycocl<strong>en</strong>a<br />

mobilises various m<strong>in</strong>erals, start<strong>in</strong>g with prote<strong>in</strong>s,<br />

<strong>in</strong> order to protect the apex from those toxic<br />

pollutants (<strong>in</strong>clud<strong>in</strong>g heavy metals) that are <strong>in</strong> the<br />

soil at mycotoxic conc<strong>en</strong>tration levels (Rousseau et<br />

al., 1994).<br />

43


Absorption of heavy metal not only <strong>in</strong>hibits fungal<br />

growth but also causes physiological and<br />

morphological changes. Their toxic effect seems to<br />

be ma<strong>in</strong>ly exerted on <strong>en</strong>zymes. Growth <strong>in</strong>hibition<br />

may be caused by catalytically active groups be<strong>in</strong>g<br />

masked; prote<strong>in</strong> d<strong>en</strong>aturation; steric conformation<br />

be<strong>in</strong>g modified; or by the activation of other sites<br />

<strong>in</strong>volved <strong>in</strong> the formation of <strong>en</strong>zyme-substrate<br />

complexes compet<strong>in</strong>g with those normally pres<strong>en</strong>t.<br />

These toxic actions vary from species to species<br />

and dep<strong>en</strong>d on metal conc<strong>en</strong>trations and exposure<br />

time (Onofri et al., 1999; Tyler et al., 1989).<br />

2.4.2.7 mycorrhizal fungi as <strong>in</strong>dicators of the<br />

quality and health of the plant-soil complex<br />

In mycorrhizal symbiosis, the positive effects of<br />

nutritional exchanges can be observed <strong>in</strong> the<br />

metabolisms of both partners. The effici<strong>en</strong>cy of<br />

these associations varies accord<strong>in</strong>g to a series of<br />

dynamic <strong>in</strong>teractions which <strong>in</strong>volve not only the<br />

plant and the fungus, but other <strong>en</strong>vironm<strong>en</strong>tal and<br />

pedological factors and the relationships that are<br />

established betwe<strong>en</strong> these variables (Montecchio,<br />

2008).<br />

Mycorrhizal fungi can be used as soil-quality<br />

<strong>in</strong>dicators because they carry out key functions<br />

with<strong>in</strong> the soil. The id<strong>en</strong>tification of easily<br />

monitorable metabolic markers makes the<br />

observation and evaluation of changes which can<br />

affect soil <strong>en</strong>vironm<strong>en</strong>t functionality possible. A<br />

good example for this is glomal<strong>in</strong>, a hydrophobic<br />

glycoprote<strong>in</strong> produced by arbuscular mycorrhizal<br />

(AM) fungi (Wright et al., 1996). Glomal<strong>in</strong><br />

accumulates <strong>in</strong> soil <strong>in</strong> the form of a prote<strong>in</strong>ous<br />

substance known as Glomal<strong>in</strong> Related Soil Prote<strong>in</strong><br />

(GRSP). GRSP is an easily measurable marker that<br />

can determ<strong>in</strong>e the medium- to long-term activity of<br />

AM fungi. It has be<strong>en</strong> demonstrated that this<br />

marker is not only s<strong>en</strong>sitive to <strong>en</strong>vironm<strong>en</strong>tal<br />

changes such as the <strong>in</strong>crease of atmospheric CO 2<br />

(Rillig et al., 2000) and to various soil use and<br />

managem<strong>en</strong>t systems (Bed<strong>in</strong>i et al., 2007), but also<br />

bears a high correlation to the stability of particle<br />

aggregations with<strong>in</strong> the soil (Bed<strong>in</strong>i et al., 2009),<br />

an important parameter of the soil’s own<br />

functionality.<br />

2.4.2.8 Mushrooms and the health of the plantsoil<br />

complex<br />

It is rather difficult to make use of the values<br />

supplied by mycological and microbiological<br />

44<br />

parameters because soil microorganisms and fungi<br />

<strong>in</strong> the litter react very quickly to seasonal changes<br />

and rapidly adapt to differ<strong>en</strong>t <strong>en</strong>vironm<strong>en</strong>tal needs.<br />

Thus it becomes difficult to dist<strong>in</strong>guish natural<br />

fluctuations from changes caused by human<br />

activity, especially wh<strong>en</strong> the data are recorded<br />

without a control group, as is the case <strong>in</strong> natural<br />

systems.<br />

Several authors have proposed solutions to this<br />

issue. Brookes (1994), for <strong>in</strong>stance, states that no<br />

parameter can be used <strong>in</strong> isolation but rather a<br />

whole series of correlated parameters should be<br />

jo<strong>in</strong>tly considered so as to create a k<strong>in</strong>d of “<strong>in</strong>ternal<br />

control group”, as is the case wh<strong>en</strong> consider<strong>in</strong>g<br />

carbon <strong>in</strong> microbial biomass and the total organic<br />

carbon <strong>in</strong> soil. Wh<strong>en</strong> a soil sample pres<strong>en</strong>ts a<br />

significant variation from “normal” values<br />

(Cbiomass/C total organic <strong>in</strong> soil) <strong>in</strong> a particular soil<br />

managem<strong>en</strong>t system under particular climatic and<br />

soil type conditions, this value th<strong>en</strong> becomes an<br />

<strong>in</strong>dicator of the soil’s chang<strong>in</strong>g ecosystem<br />

functionality.<br />

There is actually an almost l<strong>in</strong>ear relationship<br />

betwe<strong>en</strong> these two variables, ev<strong>en</strong> if large<br />

discrepancies may exist betwe<strong>en</strong> soils with<br />

differ<strong>in</strong>g physical characteristics or which are<br />

managed differ<strong>en</strong>tly (Bloem et al., 2006).<br />

Many studies have be<strong>en</strong> conducted on the<br />

possibility of us<strong>in</strong>g microbiological and biochemical<br />

parameters to characterize soil microbial<br />

diversity <strong>in</strong> both g<strong>en</strong>etic and functional terms.<br />

Firstly, one must determ<strong>in</strong>e the pres<strong>en</strong>ce of<br />

microbial life <strong>in</strong> soil and its order of magnitude;<br />

next it is ess<strong>en</strong>tial to understand which functions<br />

the liv<strong>in</strong>g population has and how active it is; th<strong>en</strong><br />

f<strong>in</strong>ally, it is important to determ<strong>in</strong>e the structure of<br />

the microbial and mycological communities there<strong>in</strong><br />

and the relationships they establish with plants<br />

(ISPRA, 2009).<br />

Microbiological and biochemical methods are now<br />

able to provide necessary <strong>in</strong>formation on soils.<br />

Rec<strong>en</strong>tly Bloem et al. (2006) have divided these<br />

methods <strong>in</strong>to four groups dep<strong>en</strong>d<strong>in</strong>g on the type of<br />

<strong>in</strong>formation they can provide:<br />

• I. Measurem<strong>en</strong>t of biomass and<br />

microbial load: <strong>in</strong>cludes all methods that<br />

def<strong>in</strong>e the weight of soil and the number<br />

of microorganisms it conta<strong>in</strong>s, both <strong>in</strong><br />

terms of total load and as nutritional or<br />

physiological groups, such as plate<br />

counts, colorimetric microscopy, and<br />

biochemical methods able to provide


<strong>in</strong>formation on active populations; to this<br />

group one should add the study of<br />

mycorrhizae l<strong>in</strong>ked to the mapp<strong>in</strong>g and<br />

<strong>in</strong>v<strong>en</strong>tory of fruit<strong>in</strong>g bodies of<br />

macromycetes.<br />

• II. Measurem<strong>en</strong>t of microbial activity:<br />

<strong>in</strong>cludes all biochemical methods that<br />

provide <strong>in</strong>formation about the metabolic<br />

processes of microbial communities, both<br />

<strong>in</strong> their <strong>en</strong>tirety and divided <strong>in</strong>to<br />

functional groups. The biochemical<br />

methods can be divided <strong>in</strong>to two<br />

subgroups: the first <strong>in</strong>cludes methods that<br />

count the active population <strong>in</strong> its <strong>en</strong>tirety<br />

and that, dep<strong>en</strong>d<strong>in</strong>g on the outcome and<br />

the type of <strong>in</strong>formation it provides,<br />

should be <strong>in</strong>cluded <strong>in</strong> the first group of<br />

methods, regard<strong>in</strong>g weight and number,<br />

m<strong>en</strong>tioned above. The second subgroup<br />

conta<strong>in</strong>s methods that def<strong>in</strong>e the curr<strong>en</strong>t<br />

activity and the activity pot<strong>en</strong>tial of<br />

<strong>in</strong>dividual organisms or metabolic<br />

groups, such as respirometric tests,<br />

nitrog<strong>en</strong> m<strong>in</strong>eralisation, etc. Other<br />

methods can determ<strong>in</strong>e the maximum<br />

activity pot<strong>en</strong>tial that can be reached <strong>in</strong><br />

specific substrates (B<strong>en</strong>edetti, 2004).<br />

• III. Microbial and structural diversity<br />

of a community: this <strong>in</strong>cludes the most<br />

up-to-date methods for acquir<strong>in</strong>g<br />

ecological and molecular data.<br />

Traditionally, analysis of microbial<br />

communities <strong>in</strong> soil was carried out us<strong>in</strong>g<br />

cultivation techniques, but only a small<br />

fraction (


2.5 The refer<strong>en</strong>ce mushroom: a<br />

useful <strong>in</strong>strum<strong>en</strong>t for def<strong>in</strong><strong>in</strong>g the<br />

capacity for bio<strong>in</strong>dication of<br />

superior fungi<br />

2.5.1 Introduction<br />

The first hurdle to be overcome, <strong>in</strong> order to be able<br />

to <strong>in</strong>terpret and evaluate the significance of the<br />

pres<strong>en</strong>ce of chemical <strong>elem<strong>en</strong>ts</strong>, especially heavy<br />

metals <strong>in</strong> higher fungi, was to have <strong>in</strong>ternal and<br />

external standards, previously abs<strong>en</strong>t <strong>in</strong> sci<strong>en</strong>tific<br />

literature. The k<strong>in</strong>gdom of fungi is very complex<br />

and holds more species than the animal and plant<br />

k<strong>in</strong>gdoms, and it is estimated that the still<br />

undescribed fungal species are still hundreds of<br />

thousands (Hawksworth, 1991). Fungi are thus one<br />

of the most significant compon<strong>en</strong>ts of biodiversity<br />

and the sci<strong>en</strong>tific pot<strong>en</strong>tial for the developm<strong>en</strong>t of<br />

studies of these liv<strong>in</strong>g be<strong>in</strong>gs is great. These<br />

considerations led us to further our work <strong>in</strong> try<strong>in</strong>g<br />

to id<strong>en</strong>tify an object of comparison for fungi; the<br />

“refer<strong>en</strong>ce mushroom”, (Cocchi et al., 2006). The<br />

fungal metabolism, however, is still far from be<strong>in</strong>g<br />

fully understood and it is therefore hard to f<strong>in</strong>d an<br />

example <strong>in</strong> nature which, with refer<strong>en</strong>ce to the<br />

conc<strong>en</strong>trations of chemical <strong>elem<strong>en</strong>ts</strong> it conta<strong>in</strong>s,<br />

can be described as "pure". The variables <strong>in</strong>volved<br />

are many, as is shown by the high number of<br />

deviations from standard conc<strong>en</strong>trations measures<br />

(as found <strong>in</strong> data from all other authors) for almost<br />

all chemical <strong>elem<strong>en</strong>ts</strong> (the few exceptions tak<strong>in</strong>g on<br />

especial importance) and not all the variables are<br />

known. In this situation statistical analysis becomes<br />

ess<strong>en</strong>tial.<br />

The idea for the def<strong>in</strong>ition of a “refer<strong>en</strong>ce<br />

mushroom” came from an article by Markert<br />

(1992), who stated that “Two thirds of naturally<br />

occurr<strong>in</strong>g chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> eco-systems are not<br />

<strong>in</strong>vestigated s<strong>in</strong>ce they are viewed as noness<strong>en</strong>tial<br />

or nontoxic to biota. In view of the important role<br />

plants play <strong>in</strong> most ecosystems, their <strong>in</strong>organic<br />

chemical characterization, accord<strong>in</strong>g to modern<br />

<strong>in</strong>strum<strong>en</strong>tal multi-<strong>elem<strong>en</strong>ts</strong> techniques, the<br />

establishm<strong>en</strong>t of a “Refer<strong>en</strong>ce plant”, comparable<br />

to the “Refer<strong>en</strong>ce man” by the International<br />

Commission on Radiological Protection (ICRP),<br />

can be a useful tool for this type of chemical<br />

“f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g” […] In the future, more att<strong>en</strong>tion<br />

should focus on establish<strong>in</strong>g basel<strong>in</strong>e values for<br />

46<br />

“normal” elem<strong>en</strong>tal conc<strong>en</strong>trations <strong>in</strong> ecosystem<br />

compon<strong>en</strong>ts […]”<br />

The idea of ext<strong>en</strong>d<strong>in</strong>g the same concept to<br />

macromycetes, based on the statistical stability<br />

reached by our database, was thus evid<strong>en</strong>t (Cocchi<br />

et al., 2006). As our database conta<strong>in</strong>s <strong>in</strong>formation<br />

only on selected ascomycetes and basidiomycetes,<br />

it only allows us to establish a “refer<strong>en</strong>ce<br />

mushroom” of <strong>in</strong>itial approximation; the follow<strong>in</strong>g<br />

objective will be to ref<strong>in</strong>e analyses (and therefore<br />

gather more data for those species for which it is<br />

necessary) to arrive at the def<strong>in</strong>ition of “refer<strong>en</strong>ce<br />

<strong>mushrooms</strong>” for differ<strong>en</strong>t taxa, up to the level of<br />

species.<br />

In summary, the concept of a “refer<strong>en</strong>ce mushroom”<br />

aids us <strong>in</strong> understand<strong>in</strong>g whether the<br />

conc<strong>en</strong>trations of chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> higher<br />

<strong>mushrooms</strong> might play a role <strong>in</strong>:<br />

• Bio<strong>in</strong>dication.<br />

• Taxonomic evaluation<br />

• Estimation of the consumption of heavy<br />

metals by differ<strong>en</strong>t species of edible<br />

<strong>mushrooms</strong><br />

It should be noted that wh<strong>en</strong> speak<strong>in</strong>g of taxonomic<br />

assessm<strong>en</strong>ts, we refer to a species paradigm<br />

conceptually differ<strong>en</strong>t from the morphological<br />

species concept def<strong>in</strong>ed by both macroscopical and<br />

microscopical characters used so far almost<br />

exclusively <strong>in</strong> basidiomycete taxonomy, but widely<br />

and historically considered obsolete. Indeed <strong>in</strong> the<br />

animal and plant k<strong>in</strong>gdoms, the concept of species<br />

is ess<strong>en</strong>tially biological and historically based on<br />

both classical and molecular phylog<strong>en</strong>etics.<br />

Molecular methods are now <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g<br />

applied to fungal taxonomy and the concept of<br />

species to which we refer <strong>in</strong> our analyses is<br />

analogous to that of a “biological species”, because<br />

the conc<strong>en</strong>trations of the various chemical <strong>elem<strong>en</strong>ts</strong><br />

dep<strong>en</strong>d heavily on the differ<strong>en</strong>t metabolisms of<br />

each species. It is obvious, however, that it would<br />

be absurd to completely disregard the systematics<br />

and taxonomy curr<strong>en</strong>tly used <strong>in</strong> mycology; these<br />

be<strong>in</strong>g the sole criteria available for the taxonomic<br />

determ<strong>in</strong>ation of the fungal samples analysed. For<br />

this reason, id<strong>en</strong>tifications were all controlled by<br />

expert mycologists from the Associazione<br />

Micologica Bresadola (many of our samples came<br />

from the National Sci<strong>en</strong>tific Committee of the<br />

AMB) and from the Gruppo Micologico e<br />

Naturalistico “R<strong>en</strong>zo Franchi” di Reggio Emilia<br />

(AMB). In fact, the comparison and exchange of


<strong>in</strong>formation with other researchers must be<br />

underp<strong>in</strong>ned by the "certa<strong>in</strong>ty" that the samples<br />

each researcher is study<strong>in</strong>g come from the same<br />

species – because systematics and morphological<br />

taxonomy, ev<strong>en</strong> under the rules of the International<br />

Code for Botanical Nom<strong>en</strong>clature, still leave ample<br />

room for manoeuvre <strong>in</strong> nam<strong>in</strong>g species and <strong>in</strong> the<br />

use of synonyms.<br />

Clearly, the "refer<strong>en</strong>ce mushroom" is strongly<br />

<strong>in</strong>flu<strong>en</strong>ced by the size and composition of the<br />

global sample used. Despite this, but by employ<strong>in</strong>g<br />

a large sample, the use of this concept allows us to<br />

determ<strong>in</strong>e to a good degree the average values of<br />

the variables under consideration.<br />

Our work has shown that macromycetes can<br />

accumulate large quantities of various chemical<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> their mycelia. Some authors have<br />

suggested that this accumulation may be specific to<br />

species and g<strong>en</strong>era, but certa<strong>in</strong>ly the composition of<br />

substrate may affect conc<strong>en</strong>trations <strong>in</strong> the<br />

mycelium and th<strong>en</strong> <strong>in</strong> the fruit<strong>in</strong>g bodies. Dur<strong>in</strong>g<br />

this study, which lasted more than 20 years, we<br />

analysed the distribution of over 30 chemical<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> the fruit<strong>in</strong>g bodies of more than 9,000<br />

samples of ascomycetes and basidiomycetes<br />

collected <strong>in</strong> Italy and, to a lesser ext<strong>en</strong>t, <strong>in</strong> other<br />

European regions. The data are pres<strong>en</strong>ted <strong>in</strong> this<br />

work, both <strong>in</strong> ext<strong>en</strong>ded form <strong>in</strong> the App<strong>en</strong>dix and<br />

<strong>in</strong> summarised form <strong>in</strong> Table 2 <strong>in</strong> paragraph 3.1.7.<br />

This type of pres<strong>en</strong>tation should <strong>en</strong>able <strong>in</strong>terested<br />

parties to analyse the <strong>in</strong>formation conta<strong>in</strong>ed <strong>in</strong> the<br />

database <strong>in</strong> detail, pot<strong>en</strong>tially ev<strong>en</strong> start<strong>in</strong>g from the<br />

raw data <strong>in</strong>cluded <strong>in</strong> the accompany<strong>in</strong>g CD.<br />

2.5.2 Elaboration of the “refer<strong>en</strong>ce<br />

mushroom”: an example<br />

We here<strong>in</strong> aim to clarify the procedure we used to<br />

def<strong>in</strong>e our “refer<strong>en</strong>ce mushroom”. We id<strong>en</strong>tified<br />

the species for which we had data from at least 20<br />

samples, and from these (about 60 species), we<br />

selected some at random.<br />

This is a list of the selected species. We have<br />

<strong>in</strong>dicated, for each of the species, the symbol that<br />

repres<strong>en</strong>ts it on the graph <strong>in</strong> Fig. 20 and the number<br />

of samples analysed:<br />

• Agaricus arv<strong>en</strong>sis Schaeff. : (AA). Nr. 58<br />

• Agaricus bisporus (J. E. Lange) Imbach:<br />

(AB). Nr. 43<br />

• Agaricus bitorquis (Quél.) Sacc. : (AC).<br />

Nr. 37<br />

• Agaricus ur<strong>in</strong>asc<strong>en</strong>s (Jul. Schäff. & F. H.<br />

Møller) S<strong>in</strong>ger [s<strong>in</strong>. A. alberti Bon; A.<br />

macrosporus (F.H. Møller & Jul. Schäff.)<br />

Pilát]: (AM). Nr. 51<br />

• Amanita caesarea (Scop.) Pers. : (AI).<br />

Nr. 27<br />

• Amanita muscaria (L.) Lam. : (AF). Nr.<br />

197<br />

• Amanita phalloides (Vaill. ex Fr.) L<strong>in</strong>k:<br />

(AP). Nr. 24<br />

• Armillaria mellea (Vahl) P. Kumm. :<br />

(AR). Nr. 26<br />

• Boletus edulis Bull. : (BE). Nr. 115<br />

• Boletus luridus Schaeff. : (BL). Nr. 37<br />

• Boletus p<strong>in</strong>ophilus Pilát & Dermek: (BP).<br />

Nr. 78<br />

• Calocybe gambosa (Fr.) Donk: (CG). Nr.<br />

20<br />

• Lycoperdon utriforme Bull. [s<strong>in</strong>. Calvatia<br />

utriformis (Bull.) Jaap]: (CU). Nr. 49<br />

• Cantharellus cibarius Fr. : (CC). Nr. 42<br />

• Craterellus lutesc<strong>en</strong>s (Fr.) Fr. [s<strong>in</strong>.<br />

Cantharellus lutesc<strong>en</strong>s Fr.]: (CL). Nr. 39<br />

• Infundibulicybe geotropa (Bull.) Harmaja<br />

[s<strong>in</strong>. Clitocybe geotropa (Bull.) Quél.]:<br />

(CA). Nr. 23<br />

• Entoloma saundersii (Fr.) Sacc. : (ES).<br />

Nr. 41<br />

• Helvella crispa (Scop.) Fr. : (HC). Nr. 29<br />

• Hydnum repandum L.: (HR). Nr. 37<br />

• Marasmius oreades (Bolton) Fr. : (MO).<br />

Nr. 66<br />

• Mitrophora semilibera (DC.) Lév. [s<strong>in</strong>.<br />

Morchella semilibera DC.]: (MS). Nr. 27<br />

• Cort<strong>in</strong>arius caperatus (Pers.) Fr. [s<strong>in</strong>.<br />

Rozites caperatus (Pers.) P. Karst.]:<br />

• (RC). Nr. 52<br />

• Russula cyanoxantha (Schaeff.) Fr. :<br />

(RA). Nr. 33<br />

47


48<br />

• Russula vesca Fr : (RV). Nr. 39<br />

• Boletus rubellus Krombh. [s<strong>in</strong>.<br />

Xerocomus rubellus (Krombh.) Quél.]:<br />

(XR). Nr. 77<br />

• Boletus subtom<strong>en</strong>tosus L. [s<strong>in</strong>.<br />

Xerocomus subtom<strong>en</strong>tosus (L.) Quél.]:<br />

(XS). Nr. 31<br />

Fig. 20. Results of a “multidim<strong>en</strong>sional scal<strong>in</strong>g” analysis applied to the species listed <strong>in</strong> the preced<strong>in</strong>g text. Abbreviations: see text. RM:<br />

calculated values of the refer<strong>en</strong>ce mushroom (stress coeffici<strong>en</strong>t = 0.129).<br />

Statistical analysis and multi-dim<strong>en</strong>sional scal<strong>in</strong>g<br />

(MDS; a powerful multivariate data analysis<br />

technique that helps to id<strong>en</strong>tify key dim<strong>en</strong>sions<br />

among a large set of variables) were applied to the<br />

conc<strong>en</strong>tration data of the selected species. MDS,<br />

unlike others, does not imply particular<br />

mathematical assumptions about the data<br />

distribution type (e.g. data l<strong>in</strong>earity or distribution<br />

normality) and is therefore a g<strong>en</strong>eral procedure<br />

which is not, <strong>in</strong> practice, subject to significant<br />

mathematical distortions. The stress coeffici<strong>en</strong>t of<br />

the f<strong>in</strong>al configuration is an <strong>in</strong>dex that measures the<br />

quality of reduction and <strong>in</strong>dicates if the model is<br />

applicable to the sampled data: data range from 0<br />

(the "ideal value" <strong>in</strong> a practical s<strong>en</strong>se) to 1 (a poor<br />

value). Two coord<strong>in</strong>ates were calculated for each<br />

species and these helped to id<strong>en</strong>tify one po<strong>in</strong>t, a<br />

depiction of the species, <strong>in</strong> the two-dim<strong>en</strong>sional<br />

graph <strong>in</strong> Fig. 20.<br />

The quality of reduction is normally considered<br />

good wh<strong>en</strong> the stress coeffici<strong>en</strong>t is less than 0.2.<br />

The po<strong>in</strong>t that repres<strong>en</strong>ts the "refer<strong>en</strong>ce mushroom<br />

(RM) was measured on all samples us<strong>in</strong>g the mean<br />

values. From Fig. 20 one can note that the RM<br />

po<strong>in</strong>t, as expected, is very near to zero. From the<br />

graph one can also see that po<strong>in</strong>ts BE (Boletus


edulis), BP (Boletus p<strong>in</strong>ophilus), AP (Amanita<br />

phalloides) differ significantly from RM. This<br />

differ<strong>en</strong>ce is characteristic of the species. What we<br />

must do th<strong>en</strong>, is to check to see what the causes of<br />

these respective positions are.<br />

To this <strong>en</strong>d we may refer to the tables conta<strong>in</strong><strong>in</strong>g<br />

the specific average data and their confid<strong>en</strong>ce<br />

<strong>in</strong>tervals as determ<strong>in</strong>ed <strong>in</strong> our research. From these<br />

tables it is clear that factors <strong>in</strong>flu<strong>en</strong>c<strong>in</strong>g distance<br />

from the "refer<strong>en</strong>ce mushroom" for A. phalloides<br />

<strong>in</strong>clude high chlor<strong>in</strong>e conc<strong>en</strong>trations (Cl); for<br />

B. edulis and B. p<strong>in</strong>ophilus (and to a lesser ext<strong>en</strong>t,<br />

for Agaricus bitorquis) high conc<strong>en</strong>trations of Se<br />

are responsible.<br />

In summary we <strong>in</strong>dicate below the key features of<br />

some species on which we have carried out the<br />

same statistical analysis:<br />

• Mitrophora semilibera (DC.) Lév. [s<strong>in</strong>.<br />

Morchella semilibera DC.] (MS): high<br />

levels of alum<strong>in</strong>ium (Al), barium (Ba),<br />

calcium (Ca), cobalt (Co), iron (Fe),<br />

nickel (Ni), phosphorus (P), strontium<br />

(Sr).<br />

• Lycoperdon utriforme Bull. [s<strong>in</strong>.<br />

Calvatia utriformis (Bull.) Jaap] (CU):<br />

high levels of copper (Cu), potassium<br />

(K), lead (Pb) (the fact that this species,<br />

always collected <strong>in</strong> high-altitude<br />

grasslands, pres<strong>en</strong>ts relatively high<br />

conc<strong>en</strong>trations of Pb as compared to<br />

other species, requires further<br />

<strong>in</strong>vestigation), sulphur (S), z<strong>in</strong>c (Zn).<br />

• Agaricus arv<strong>en</strong>sis Schaeff. (AA): high<br />

levels of silver (Ag), cadmium (Cd),<br />

cobalt (Co), copper (Cu), phosphorus (P);<br />

• Agaricus ur<strong>in</strong>asc<strong>en</strong>s (Jul. Schäff. & F.<br />

H. Møller) S<strong>in</strong>ger [s<strong>in</strong>. A. alberti Bon;<br />

A. macrosporus (F. H. Møller & Jul.<br />

Schäff.) Pilát] (AM): high levels of silver<br />

(Ag), cadmium (Cd), cobalt (Co), copper<br />

(Cu), phosphorus (P).<br />

• Amanita muscaria (L.) Lam. (AM): high<br />

levels of vanadium (V), zirconium (Zr).<br />

• Boletus edulis Bull. (BE): high levels of<br />

mercury (Hg), sel<strong>en</strong>ium (Se), sulphur (S)<br />

and low potassium (K).<br />

• Boletus p<strong>in</strong>ophilus Pilát & Dermek (BP):<br />

high levels of mercury (Hg), sel<strong>en</strong>ium<br />

(Se), sulphur (S).<br />

2.5.2.1 Procedures to follow<br />

The methodology described above can be applied<br />

to vary<strong>in</strong>g types of both ecological and taxonomic<br />

data so long as care is tak<strong>en</strong> to establish control<br />

structures each time it is used. In g<strong>en</strong>eral the<br />

procedure to follow will be:<br />

• Check<strong>in</strong>g that the data repres<strong>en</strong>t a<br />

“statistically stable” set.<br />

• Us<strong>in</strong>g <strong>in</strong> a first step descriptive/<br />

exploratory statistics methods (mean,<br />

median, confid<strong>en</strong>ce <strong>in</strong>tervals, maximum,<br />

m<strong>in</strong>imum, and standard deviation).<br />

• If the descriptive methods <strong>in</strong>dicate<br />

possible differ<strong>en</strong>ces, mov<strong>in</strong>g on to<br />

multivariate analysis. Here one can either<br />

use summary data or the raw data,<br />

dep<strong>en</strong>d<strong>in</strong>g on the purpose of each<br />

analysis.<br />

Below, we pres<strong>en</strong>t a concrete example of how the<br />

data gathered can be analysed. The graphs <strong>in</strong> Figs.<br />

21, 22, and 24 are largely similar to those giv<strong>en</strong> <strong>in</strong><br />

Petr<strong>in</strong>i et al. (2009).<br />

2.5.2.2 Univariate analysis<br />

49


Control of sample group homog<strong>en</strong>eity:<br />

50<br />

• By geographic region.<br />

• By matrix or support.<br />

• By elevation<br />

Wh<strong>en</strong> confid<strong>en</strong>ce <strong>in</strong>tervals overlap<br />

one cannot postulate significant<br />

statistical differ<strong>en</strong>ces betwe<strong>en</strong> the<br />

samples.<br />

Second step:<br />

Choice of refer<strong>en</strong>ce mushroom<br />

(Refer<strong>en</strong>ce)<br />

Fig. 21. Univariate analysis: the first step.<br />

For example, if one would aim to study Amanitales, Boletales and<br />

Russulales):<br />

• Refer<strong>en</strong>ce calculated for all samples<br />

• Refer<strong>en</strong>ce for the Amanitales order<br />

• Refer<strong>en</strong>ce for the Boletales order<br />

• Refer<strong>en</strong>ce for the Russulales order


Explorative analysis – comparison<br />

of groups:<br />

The P cont<strong>en</strong>t <strong>in</strong> samples of<br />

Lycoperdon utriforme Bull. [s<strong>in</strong>.<br />

Calvatia utriformis (Bull.) Jaap]<br />

and Calvatia gigantea (Batsch)<br />

Lloyd [s<strong>in</strong>. Langermannia<br />

gigantea (Batsch) Rostk.] is<br />

much higher than <strong>in</strong> other<br />

studied samples.<br />

The Pb cont<strong>en</strong>t <strong>in</strong> samples of<br />

Lycoperdon utriforme Bull. [s<strong>in</strong>.<br />

Calvatia utriformis (Bull.) Jaap]<br />

is much higher than <strong>in</strong> other<br />

studied samples.<br />

Applicability to other samples:<br />

The Se cont<strong>en</strong>t <strong>in</strong> samples of the Boletus<br />

edulis group gathered <strong>in</strong> Calabria and <strong>in</strong> the<br />

Prov<strong>in</strong>ce of Massa are differ<strong>en</strong>t from those<br />

found <strong>in</strong> other Italian, European and<br />

worldwide regions.<br />

Fig. 22. Univariate analysis: the third step.<br />

Fig. 23. Univariate analysis: the fourth step.<br />

51


2.5.2.3 Multivariate analysis<br />

Example: classification of several Boletus species.<br />

The use of MDS (Figure 24) to classify certa<strong>in</strong><br />

species of Boletus – also <strong>in</strong>vestigated by Vizz<strong>in</strong>i et<br />

52<br />

al. (2008) – by us<strong>in</strong>g their cont<strong>en</strong>t of certa<strong>in</strong><br />

chemical <strong>elem<strong>en</strong>ts</strong> has produced results that are <strong>in</strong><br />

complete agreem<strong>en</strong>t with those produced by<br />

molecular biology (details <strong>in</strong> Petr<strong>in</strong>i et al., 2009).<br />

Fig. 24. Results of analysis on several species from the g<strong>en</strong>us Boletus us<strong>in</strong>g MDS (Petr<strong>in</strong>i et al., 2009). F<strong>in</strong>al configuration stress:


of biomass as well as the stor<strong>in</strong>g and<br />

transformation of <strong>en</strong>ergy and m<strong>in</strong>eral/organic<br />

<strong>elem<strong>en</strong>ts</strong>; the soil also acts as a filter protect<strong>in</strong>g<br />

subterranean waters and exchanges gas with the<br />

atmosphere; it constitutes a support for life and<br />

whole ecosystems. Furthermore, soil is a reserve of<br />

g<strong>en</strong>etic resources and raw materials, the custodian<br />

of lost civilisations, and a pillar of the landscape.<br />

To allow the soil to carry out these functions, it<br />

must be def<strong>en</strong>ded from degradation and from other<br />

threats to its well-function<strong>in</strong>g. The Communication<br />

lists the ma<strong>in</strong> threats such as erosion, organic<br />

matter decl<strong>in</strong>e, local and diffuse contam<strong>in</strong>ation,<br />

seal<strong>in</strong>g, compaction, sal<strong>in</strong>isation, landslides and<br />

flood<strong>in</strong>g as well as add<strong>in</strong>g the loss of biodiversity<br />

as a full problem <strong>in</strong> its own right. This last po<strong>in</strong>t<br />

assumes strategic importance as it was one of the<br />

first times the word “biodiversity” featured clearly<br />

<strong>in</strong> any official EC docum<strong>en</strong>ts.<br />

Two other directives are believed to be<br />

fundam<strong>en</strong>tal to safeguard<strong>in</strong>g the <strong>en</strong>vironm<strong>en</strong>t and<br />

its biodiversity: Directive 79/409/EEC, better<br />

known as the "Birds Directive" and Directive<br />

92/43/EEC, the "Habitats Directive". With these<br />

two, signatory countries were asked to make efforts<br />

to conserve biodiversity through the conservation<br />

of natural habitats and of wild fauna and flora,<br />

through the establishm<strong>en</strong>t and ma<strong>in</strong>t<strong>en</strong>ance of a<br />

coher<strong>en</strong>t ecological network of special areas of<br />

conservation. The message s<strong>en</strong>t out was to preserve<br />

and restore plant and animal biodiversity.<br />

So as to better implem<strong>en</strong>t the strategy, <strong>in</strong><br />

September 2006, the European Commission<br />

adopted a series of tools. These were: the SFD Soil<br />

Framework Directive, COM 232 (2006),<br />

Commission Communication, COM 231 (2006)<br />

and the Impact Assessm<strong>en</strong>t SEC 620 (2006). These<br />

tools established soil as hav<strong>in</strong>g a c<strong>en</strong>tral role to<br />

play and consequ<strong>en</strong>tly saw biodiversity as a key<br />

feature <strong>in</strong> its preservation and restoration.<br />

The United Nations Framework Conv<strong>en</strong>tion on<br />

Climate Change (UNFCCC), and the subsequ<strong>en</strong>t<br />

Kyoto Protocol def<strong>in</strong>ed strategies for conta<strong>in</strong><strong>in</strong>g<br />

emissions of gre<strong>en</strong>house gases. They also<br />

recognised that the terrestrial biosphere plays a<br />

fundam<strong>en</strong>tal role <strong>in</strong> the conservation of<br />

ecosystems, plants and the creation of new forests<br />

which are all important steps for combat<strong>in</strong>g the<br />

gre<strong>en</strong>house effect and restor<strong>in</strong>g biodiversity.<br />

The docum<strong>en</strong>ts required signatory countries to<br />

quantify the spatial distribution of six differ<strong>en</strong>t<br />

categories of land use (forests, wetlands, meadows,<br />

farmland, urban areas and other). Furthermore, for<br />

each land category, <strong>in</strong>formation regard<strong>in</strong>g the type<br />

of managem<strong>en</strong>t it requires, the biomass associated<br />

with it, the changes that occur there over time and<br />

an evaluation of the type of transformation there<br />

should be provided. In relation to these aspects the<br />

concepts of biodiversity and bio<strong>in</strong>dication take on<br />

an ever-greater relevance.<br />

Regard<strong>in</strong>g forests, the Forest Pr<strong>in</strong>ciples, adopted<br />

dur<strong>in</strong>g the Earth Summit on Susta<strong>in</strong>able<br />

Developm<strong>en</strong>t, called on States to ma<strong>in</strong>ta<strong>in</strong> or<br />

<strong>in</strong>crease the ext<strong>en</strong>t of forest cover; an ess<strong>en</strong>tial<br />

strategy to protect and <strong>in</strong>crease biodiversity.<br />

The European Landscape Conv<strong>en</strong>tion, signed <strong>in</strong><br />

Flor<strong>en</strong>ce <strong>in</strong> 2000, acknowledges that, "the quality<br />

and diversity of European landscapes constitute a<br />

common resource, and that it is important to cooperate<br />

towards their protection, managem<strong>en</strong>t and<br />

plann<strong>in</strong>g". Actions aimed at guid<strong>in</strong>g and<br />

harmonis<strong>in</strong>g the transformation of the area, such<br />

transformation be<strong>in</strong>g caused by processes l<strong>in</strong>ked to<br />

social, economic or <strong>en</strong>vironm<strong>en</strong>tal developm<strong>en</strong>t,<br />

are a valid means for the susta<strong>in</strong>able managem<strong>en</strong>t<br />

of the “landscape resource”. To provide an idea of<br />

the importance attached to ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the<br />

ext<strong>en</strong>sion of natural and semi-natural areas for<br />

susta<strong>in</strong>able developm<strong>en</strong>t, it should be m<strong>en</strong>tioned<br />

that the "Land Use Change" <strong>in</strong>dicator is part of a<br />

number of <strong>in</strong>dicators proposed by the United<br />

Commission on Susta<strong>in</strong>able Developm<strong>en</strong>t. More<br />

rec<strong>en</strong>tly, the European Environm<strong>en</strong>t Ag<strong>en</strong>cy,<br />

through the IRENA project (Indicator Report<strong>in</strong>g on<br />

the Integration of Environm<strong>en</strong>tal Concerns <strong>in</strong>to<br />

Agriculture Policy) has selected Land Use Change<br />

as one of the 35 agri-<strong>en</strong>vironm<strong>en</strong>tal <strong>in</strong>dicators for<br />

monitor<strong>in</strong>g the <strong>in</strong>tegration of <strong>en</strong>vironm<strong>en</strong>tal needs<br />

with the Common Agricultural Policy.<br />

Throughout the Italian national territory, the<br />

Susta<strong>in</strong>able Use of Natural Resources Sector of the<br />

Natural Resources and Parks Service – APAT,<br />

(ISPRA, today), launched a study of changes <strong>in</strong><br />

land use and vegetation cover that took place <strong>in</strong><br />

Italy betwe<strong>en</strong> 1990 and 2000 us<strong>in</strong>g the CORINE<br />

Land Cover Database for each year. It is evid<strong>en</strong>t<br />

how biodiversity, its ma<strong>in</strong>t<strong>en</strong>ance and its<br />

restoration play an important role <strong>in</strong> this work,<br />

oft<strong>en</strong> with aspects related to the concept of bio<strong>in</strong>dication<br />

go<strong>in</strong>g hand <strong>in</strong> hand with biodiversity and<br />

almost assum<strong>in</strong>g a s<strong>in</strong>gle, <strong>in</strong>terchangeable id<strong>en</strong>tity.<br />

Unfortunately at pres<strong>en</strong>t not <strong>en</strong>ough is known<br />

about soil biodiversity. This will be addressed <strong>in</strong><br />

the Sev<strong>en</strong>th Framework Programme, aimed at<br />

gather<strong>in</strong>g a better understand<strong>in</strong>g of biodiversity as<br />

an <strong>en</strong>vironm<strong>en</strong>tal function. This process of<br />

53


knowledge build<strong>in</strong>g will also be supported by<br />

ongo<strong>in</strong>g <strong>in</strong>itiatives connected to the Conv<strong>en</strong>tion on<br />

Biological Diversity and the "Forest Focus"<br />

programme.<br />

In conclusion, the data relat<strong>in</strong>g to <strong>mushrooms</strong><br />

pres<strong>en</strong>ted <strong>in</strong> this book augm<strong>en</strong>t and complete the<br />

<strong>in</strong>formation requested by the various <strong>in</strong>ternational<br />

ag<strong>en</strong>cies.<br />

The biodiversity of the Italian fungal species we<br />

have studied and the use of the chemical<br />

conc<strong>en</strong>tration levels <strong>in</strong> them, s<strong>in</strong>gle out fungi as<br />

54<br />

pot<strong>en</strong>tial biological <strong>in</strong>dicators for the quality of<br />

forest, woodland and semi-natural habitats.<br />

In addition, the very broad range of data <strong>in</strong>cluded<br />

here can be used over the next few decades to<br />

<strong>en</strong>able a comparison with future data, which could<br />

th<strong>en</strong> make possible a better and more<br />

compreh<strong>en</strong>sive <strong>in</strong>terpretation of the effectiv<strong>en</strong>ess<br />

of curr<strong>en</strong>t <strong>en</strong>vironm<strong>en</strong>tal protection legislation <strong>in</strong><br />

m<strong>in</strong>imis<strong>in</strong>g or negat<strong>in</strong>g the effects of climate<br />

change.


3.1 Consideration on statistics<br />

and statistical methods employed<br />

One of the fundam<strong>en</strong>tal problems <strong>in</strong> taxonomy <strong>in</strong><br />

g<strong>en</strong>eral is the selection of <strong>in</strong>ternal and external<br />

control groups for the samples analysed.<br />

Phylog<strong>en</strong>etics researchers have found a solution<br />

with external samples (outgroups), but classical<br />

taxonomy does not yet have trustworthy models <strong>in</strong><br />

this field.<br />

Therefore, we have rec<strong>en</strong>tly suggested mak<strong>in</strong>g use<br />

of c<strong>en</strong>troids to establish <strong>in</strong>ternal and external<br />

refer<strong>en</strong>ces <strong>in</strong> cases where significant amounts of<br />

data are available that can be summarised with<br />

parametric and nonparametric descriptive statistics<br />

(Petr<strong>in</strong>i et al. 2009).<br />

3.1.1 Sample choice<br />

Dur<strong>in</strong>g our work we collected data for about 9,000<br />

samples (carpophores) of basidiomycetes and<br />

ascomycetes. Our work can be described as a nonrandom<br />

semi-quantitative c<strong>en</strong>sus, because the<br />

samples tested were provided <strong>in</strong> most cases by<br />

colleagues and fri<strong>en</strong>ds belong<strong>in</strong>g to the AMB. In<br />

g<strong>en</strong>eral, the exact orig<strong>in</strong> of each carpophore was<br />

recorded for all those <strong>mushrooms</strong> provided by<br />

Italian and foreign mycologists. However, we also<br />

exam<strong>in</strong>ed samples from exhibitions of mycology <strong>in</strong><br />

Italy, and the orig<strong>in</strong> of these was not always<br />

traceable. The majority of samples were collected<br />

<strong>in</strong> the prov<strong>in</strong>ce of Reggio Emilia (50% of<br />

<strong>mushrooms</strong> were from exhibitions). Therefore, the<br />

repres<strong>en</strong>tativ<strong>en</strong>ess of our sample is somewhat<br />

reduced, because the data collected are especially<br />

repres<strong>en</strong>tative of Reggio Emilia and we cannot<br />

exclude the possibility that analysis of a differ<strong>en</strong>t<br />

set of sample data may provide a differ<strong>en</strong>t set of<br />

Chapter III<br />

Data Synthesis<br />

results. Descriptive analysis of subsamples,<br />

however, showed that at least for Italian<br />

<strong>mushrooms</strong>, our results are repres<strong>en</strong>tative.<br />

Furthermore, our sample is particularly<br />

repres<strong>en</strong>tative of basidiomycetes, because only<br />

relatively few ascomycetes were exam<strong>in</strong>ed. We<br />

note that our tables, which <strong>in</strong>clude the mean values<br />

and 95% confid<strong>en</strong>ce <strong>in</strong>tervals for the various<br />

chemical <strong>elem<strong>en</strong>ts</strong> studied, summarise all the data<br />

we collected and most of these tables are <strong>in</strong>cluded<br />

<strong>in</strong> the CD attached to this docum<strong>en</strong>t. Please note<br />

that only samples of taxa for which at least 20-30<br />

carpophores (orig<strong>in</strong>at<strong>in</strong>g from differ<strong>en</strong>t sites) were<br />

exam<strong>in</strong>ed provide reliable values. Wh<strong>en</strong> only a few<br />

carpophores of a giv<strong>en</strong> species were studied, the<br />

values are to be regarded as <strong>in</strong>dicative only.<br />

3.1.2 Statistical measurem<strong>en</strong>ts<br />

In our work we ma<strong>in</strong>ly used descriptive statistics,<br />

particularly mean, median and confid<strong>en</strong>ce <strong>in</strong>tervals.<br />

Of the differ<strong>en</strong>t types of mean (such as arithmetic,<br />

geometric, and harmonic), we used the arithmetic<br />

mean, which together with the median proved best<br />

suited to describe the datasets we collected.<br />

The 95% confid<strong>en</strong>ce <strong>in</strong>terval (95% CI) is used to<br />

estimate "real" values. By def<strong>in</strong>ition, the actual<br />

value of the <strong>en</strong>tire population can only be<br />

estimated, because one never has access to the<br />

<strong>en</strong>tire population. The CI therefore describes a set<br />

of values <strong>in</strong>side which most likely lies the "real"<br />

value, calculated us<strong>in</strong>g observed results from the<br />

sample, giv<strong>en</strong> a certa<strong>in</strong> marg<strong>in</strong> of error.<br />

The calculated data can th<strong>en</strong> be plotted us<strong>in</strong>g<br />

differ<strong>en</strong>t techniques. An example is shown <strong>in</strong> Fig.<br />

25.<br />

55


Fig. 25. Ars<strong>en</strong>ic cont<strong>en</strong>t <strong>in</strong> specim<strong>en</strong>s of Boletus edulis collected <strong>in</strong> differ<strong>en</strong>t geographical regions. The circle repres<strong>en</strong>ts the average, while the<br />

vertical bars <strong>en</strong>close all values with<strong>in</strong> the CI of 95%.<br />

3.1.3 Statistical stability<br />

To perform reliable statistical analyses, it is<br />

important that the variation of data with<strong>in</strong><br />

taxonomic (or ecological) groups to be exam<strong>in</strong>ed<br />

be stable and rema<strong>in</strong> constant over random samples<br />

56<br />

Ag (mg/Kg)<br />

dur<strong>in</strong>g resampl<strong>in</strong>g procedures and wh<strong>en</strong> new<br />

<strong>elem<strong>en</strong>ts</strong> are <strong>in</strong>troduced (Cocchi et al., 2006). Our<br />

database has reached statistical stability, as shown<br />

<strong>in</strong> Figure 26.<br />

Fig. 26. Cont<strong>en</strong>t (average and 95% CI) of Ag <strong>in</strong> the g<strong>en</strong>us Boletus. Results of n<strong>in</strong>e resampl<strong>in</strong>gs with the <strong>in</strong>troduction of new <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> the<br />

samples. The f<strong>in</strong>al sample conta<strong>in</strong>s 504 <strong>elem<strong>en</strong>ts</strong>.<br />

3.1.4 The refer<strong>en</strong>ce mushroom<br />

A great aid <strong>in</strong> statistical analysis is the use of a<br />

“refer<strong>en</strong>ce mushroom”. A propos this we hereby<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Boletus (N=504)<br />

1 2 3 4 5 6 7 8 9<br />

reproduce a part of a docum<strong>en</strong>t we published <strong>in</strong><br />

2006 (Cocchi et al. 2006).


Markert (1992), has proposed the adoption of a<br />

"refer<strong>en</strong>ce plant", an ideal plant that would have the<br />

anatomical and physiological characteristics of the<br />

average plant <strong>in</strong> the sample. This idea is <strong>in</strong>timately<br />

l<strong>in</strong>ked to that of the "refer<strong>en</strong>ce man" proposed by<br />

the ICRP and which corresponds to a person with<br />

the anatomical and physiological characteristics of<br />

the average <strong>in</strong>dividual. Similarly, the "refer<strong>en</strong>ce<br />

mushroom" is a fungus that has the anatomical and<br />

physiological characteristics of the average fungus<br />

<strong>in</strong> the sample group studied (Cocchi et al., 2006).<br />

In summary, the concept of the "refer<strong>en</strong>ce<br />

mushroom" is used to determ<strong>in</strong>e whether the<br />

conc<strong>en</strong>trations of chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> higher<br />

<strong>mushrooms</strong> may have a role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the<br />

possibility of their use <strong>in</strong> bio<strong>in</strong>dication, taxonomic<br />

evaluation and estimat<strong>in</strong>g the dietary <strong>in</strong>take of<br />

heavy metals through the consumption of edible<br />

mushroom species.<br />

Obviously the "refer<strong>en</strong>ce mushroom" is strongly<br />

<strong>in</strong>flu<strong>en</strong>ced by the size and composition of the<br />

global sample group used. Nevertheless, with a<br />

large sample group, the use of this concept allows<br />

us to ga<strong>in</strong> a good approximation of the average<br />

value of the variables under consideration.<br />

Therefore one must not forget that any average will<br />

dep<strong>en</strong>d greatly on the size and composition of the<br />

sample group and that consequ<strong>en</strong>tly a “refer<strong>en</strong>ce<br />

mushroom” needs to be id<strong>en</strong>tified on a case-bycase<br />

basis.<br />

3.1.5 Data analysis<br />

Dur<strong>in</strong>g this study, which lasted more than 20 years,<br />

we analysed the distribution of over 30 chemical<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> the fruit<strong>in</strong>g bodies of more than 9,000<br />

samples of ascomycetes and basidiomycetes<br />

collected <strong>in</strong> Italy and, to a lesser ext<strong>en</strong>t, <strong>in</strong> other<br />

European regions.<br />

3.1.5.1 Procedures followed<br />

The above-described methodology can be applied<br />

to various data-types, <strong>in</strong>clud<strong>in</strong>g both ecological and<br />

taxonomic data.<br />

3.1.5.2 Multivariate analysis<br />

The purpose of multivariate analysis is oft<strong>en</strong> to<br />

detect clusters (taxonomic, ecological, etc..) that<br />

can lead to a classification which can be used for<br />

id<strong>en</strong>tification purposes. In this work, we have not<br />

used any order<strong>in</strong>g or classification techniques,<br />

s<strong>in</strong>ce the purpose of this docum<strong>en</strong>t is purely<br />

descriptive, and <strong>in</strong>stead we aim to very briefly<br />

describe some methods that could be applied to the<br />

data pres<strong>en</strong>ted <strong>in</strong> this work.<br />

There are various methods available for group<strong>in</strong>g<br />

("order<strong>in</strong>g") data, and <strong>in</strong>clude, to m<strong>en</strong>tion only the<br />

most popular, cluster analysis, factor analysis,<br />

multidim<strong>en</strong>sional scal<strong>in</strong>g (MDS) and multiple<br />

correspond<strong>en</strong>ce analysis. Each of them has<br />

advantages and disadvantages, but all result <strong>in</strong> a<br />

reduction of a model from “n” to just a few values,<br />

this be<strong>in</strong>g mostly accomplished by optimis<strong>in</strong>g/<br />

reduc<strong>in</strong>g system variance. A deeper but simple<br />

description of the process, writt<strong>en</strong> for non<br />

statisticians and with more-detailed bibliographical<br />

refer<strong>en</strong>ces can be found <strong>in</strong> Petr<strong>in</strong>i and Sieber<br />

(2000) and Sieber et al. (1998).<br />

As regards the id<strong>en</strong>tification of samples, canonical<br />

discrim<strong>in</strong>ant analysis is perhaps the best known<br />

technique. Here we refer to more specialised texts,<br />

also cited <strong>in</strong> Petr<strong>in</strong>i and Sieber (2000).<br />

3.1.6 Software used<br />

The data were gathered us<strong>in</strong>g a Microsoft®<br />

Access® database and analysed with SPSS, version<br />

17 (SPSS Inc., Chicago, IL, USA).<br />

3.1.7 Results<br />

The CD that accompanies this report conta<strong>in</strong>s<br />

descriptive statistics describ<strong>in</strong>g the refer<strong>en</strong>ce<br />

<strong>mushrooms</strong> for each of the families, g<strong>en</strong>era and<br />

species of fungi studied. It also conta<strong>in</strong>s the<br />

number of samples, the average values and the<br />

relative 95% CI for the taxa studied. As a<br />

repres<strong>en</strong>tative example of the analyzed data we<br />

pres<strong>en</strong>t here the levels of all chemical <strong>elem<strong>en</strong>ts</strong><br />

considered <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the universal "refer<strong>en</strong>ce<br />

mushroom” (the c<strong>en</strong>troid of the total sample of<br />

about 9,000 carpophores).<br />

57


Table 2. Total samples, average values and 95% CI for all samples (N= 9328) (<strong>in</strong> mg/kg dry weight or bq/kg dry material by Cs 134 , Cs 137 and K 40 ).<br />

58<br />

Elem<strong>en</strong>t N Average 95% CI<br />

Al 9074 346 333 - 360<br />

Ag 9326 3.44 3.27 - 3.61<br />

As 9327 15.4 11.6 - 19.2<br />

B 8881 9.64 9.06 - 10.2<br />

Ba 9279 3.84 3.59 - 4.08<br />

Be 7222 0.014 0.01 - 0.01<br />

Ca 9326 914 848 - 980<br />

Cd 9328 4.20 3.92 - 4.49<br />

Cl 845 3670 3290 - 4040<br />

Co 9240 0.40 0.38 - 0.42<br />

Cr 9327 1.49 1.40 - 1.58<br />

Cs 7852 2.28 2.04 - 2.52<br />

Cs 134 328 91.8 44.7 - 139<br />

Cs 137 328 2590 1740 - 3435<br />

Cu 9327 58.8 56.4 - 61.3<br />

Fe 9323 330 318 - 343<br />

Ge 1182 0.033 0.03 - 0.04<br />

Hg 9296 1.19 1.11 - 1.28<br />

K 9327 39630 39310 - 39950<br />

K 40 328 1350 1290 - 1410<br />

La 6534 0.34 0.29 - 0.39<br />

Li 9248 0.36 0.35 - 0.38<br />

Mg 9327 1310 1300 - 1330<br />

Mn 9327 34.7 33.0 - 36.4<br />

Mo 9216 0.20 0.19 - 0.21<br />

Na 9327 328 314 - 342<br />

Ni 9327 1.87 1.79 - 1.96<br />

P 9300 7195 710 – 7286<br />

Pb 9320 1.61 1.51 - 1.72<br />

Rb 9327 138 133 - 144<br />

S 9317 3364 3314 - 3415<br />

Sc 5623 0.27 0.25 - 0.3<br />

Se 9327 4.13 3.87 - 4.39<br />

Sr 9307 3.22 2.97 - 3.48<br />

Ti 8102 10.2 9.8 - 10.6<br />

V 9327 3.22 2.83 - 3.61<br />

Y 5620 0.20 0.18 - 0.22<br />

Zn 9327 117 115 - 119<br />

Zr 6633 0.42 0.37 - 0.47


3.2 Applied geostatistical analysis<br />

3.2.1 Introduction<br />

Geostatistics is the branch of statistics that deals<br />

with the analysis of spatial data derived from<br />

sampl<strong>in</strong>g. In <strong>en</strong>vironm<strong>en</strong>tal analysis and modell<strong>in</strong>g<br />

it is an ess<strong>en</strong>tial tool for the managem<strong>en</strong>t,<br />

understand<strong>in</strong>g, and correct use of data from<br />

<strong>en</strong>vironm<strong>en</strong>tal surveys and measurem<strong>en</strong>ts (such as<br />

meteorological data, pollutant conc<strong>en</strong>trations,<br />

piezometers, etc.).<br />

Geostatistical analysis consists <strong>in</strong> modell<strong>in</strong>g the<br />

ph<strong>en</strong>om<strong>en</strong>on one wishes to <strong>in</strong>vestigate with a<br />

random variable characterized by a spatial,<br />

temporal or spatiotemporal law. This approach<br />

allows one to highlight and describe the regional or<br />

temporal variability (qualitative and quantitative)<br />

of the data analysed and to map out the results. It<br />

measures the effect of the position of the measur<strong>in</strong>g<br />

po<strong>in</strong>t on the variability of the data observed.<br />

Geostatistical methods are valid for all fields of<br />

applied sci<strong>en</strong>ce <strong>in</strong> which the ph<strong>en</strong>om<strong>en</strong>a to be<br />

studied are spatial <strong>in</strong> nature. Over the past three<br />

decades, it has be<strong>en</strong> used, for <strong>in</strong>stance, <strong>in</strong> soil<br />

sci<strong>en</strong>ce, hydrology, hydrogeology, geochemistry,<br />

meteorology, oceanography, <strong>en</strong>vironm<strong>en</strong>tal health,<br />

agronomy, and imag<strong>in</strong>g analysis.<br />

Let us take a spatial ph<strong>en</strong>om<strong>en</strong>on, for example the<br />

heavy metal pollution of a site. In g<strong>en</strong>eral, by<br />

<strong>in</strong>dicat<strong>in</strong>g the conc<strong>en</strong>tration of the pollutant with z,<br />

and the g<strong>en</strong>eric coord<strong>in</strong>ate po<strong>in</strong>t of the field (xlat,<br />

xlong) i with x i, Z(x) is a variable that repres<strong>en</strong>ts the<br />

conc<strong>en</strong>tration of pollution <strong>in</strong> certa<strong>in</strong> po<strong>in</strong>ts of the<br />

site.<br />

If one property varies <strong>in</strong> a more or less cont<strong>in</strong>uous<br />

way through space, it can be tak<strong>en</strong> as a regionalised<br />

variable (Goovaerts, 1997) and analysed with<br />

geostatistical <strong>in</strong>strum<strong>en</strong>ts.<br />

Estimat<strong>in</strong>g by krig<strong>in</strong>g <strong>in</strong>terpolation <strong>en</strong>ables a more<br />

detailed local spatial variation of the properties<br />

under study to be achieved. This type of<br />

<strong>in</strong>terpolation is appropriate only where the property<br />

varies <strong>in</strong> a cont<strong>in</strong>uous manner and the data are<br />

spatially dep<strong>en</strong>d<strong>en</strong>t or correlated. The model of<br />

spatial variation for geostatistical estimation is as<br />

follows:<br />

Z(x) = μ�v + ε(x)<br />

where Z(x) is the random variable <strong>in</strong> location x, μ v<br />

is the local average of Z <strong>in</strong> the predef<strong>in</strong>ed limits of<br />

location x, and ε(x) is a random term with an<br />

expectation of zero, and a variance equal to:<br />

var[ε�(x) −ε�(x + h)]= E[ε�(x) −ε�(x + h) 2 ]= 2γ(h)<br />

variance is calculated for all couples of locations<br />

x + x+h, where h is a distance vector (lag) for all<br />

distances and directions. γ is the semivariance<br />

betwe<strong>en</strong> two locations, which, where this is<br />

stationary (μ v is locally constant) will be equival<strong>en</strong>t<br />

to:<br />

γ(h) = 1 /2 var [Z(x) – Z(x+h)] = 1 /2 E [Z(x) – Z(x+h) 2 ]<br />

and def<strong>in</strong>es the variogram of Z. The variogram<br />

provides an unbiased description of the scale and<br />

pattern of spatial variation, the spatial model<br />

needed for krig<strong>in</strong>g, and a basis for design<strong>in</strong>g<br />

optimal sampl<strong>in</strong>g schemes (McBratney et al.,<br />

1981). Theoretical variogram modell<strong>in</strong>g, start<strong>in</strong>g<br />

from experim<strong>en</strong>tal variogram modell<strong>in</strong>g, can<br />

<strong>in</strong>dicate which approach to take <strong>in</strong> predictive<br />

<strong>in</strong>vestigation.<br />

3.2.2 Ord<strong>in</strong>ary krig<strong>in</strong>g<br />

At this po<strong>in</strong>t values can be estimated <strong>in</strong> po<strong>in</strong>ts or <strong>in</strong><br />

blocks through krig<strong>in</strong>g, a shift<strong>in</strong>g mean weighted to<br />

observed values based on the variogram <strong>in</strong>side<br />

determ<strong>in</strong>ed limits def<strong>in</strong>ed by an area N (<strong>in</strong>side<br />

which the stationary values of the variable are<br />

assumed to hold). For a regionalised variable Z,<br />

with values measured as be<strong>in</strong>g z(xi) at site (x i),<br />

I = 1, 2, …, n, the ord<strong>in</strong>ary krig<strong>in</strong>g algorithm will<br />

be:<br />

ZB ( )<br />

N<br />

i = 1<br />

λ . zx<br />

i<br />

where Z(B) repres<strong>en</strong>ts the value estimated for<br />

block B and λi the weights assigned to <strong>in</strong>ternal<br />

po<strong>in</strong>ts at N. The krig<strong>in</strong>g estimator can be def<strong>in</strong>ed as<br />

non-distorted (the weights add up to one) and<br />

optimal (the weights are selected so as to reduce<br />

variance to a m<strong>in</strong>imum). Unlike with classical<br />

<strong>in</strong>terpolation methods (<strong>in</strong>verse square of the<br />

distance, triangulations, variable mean ...), this<br />

<strong>in</strong>terpolation allows not only obta<strong>in</strong><strong>in</strong>g an<br />

estimation map of the parameter but also a map of<br />

the estimation variance (the krig<strong>in</strong>g error), allow<strong>in</strong>g<br />

evaluation of the reliability of prediction.<br />

59


One of the most common tasks <strong>in</strong> the process<strong>in</strong>g of<br />

spatial data is the construction of thematic maps,<br />

i.e. geo-refer<strong>en</strong>ced maps relat<strong>in</strong>g to selected<br />

geographic areas, <strong>in</strong> which, by an appropriate<br />

method of repres<strong>en</strong>tation, the tr<strong>en</strong>d of a variable<br />

under study – <strong>in</strong> our case the conc<strong>en</strong>tration of<br />

metals – is giv<strong>en</strong>.<br />

Iso-value contour maps, which <strong>in</strong> cartographic<br />

jargon are also known as vector maps, are just one<br />

of many ways of repres<strong>en</strong>t<strong>in</strong>g a geographic<br />

variable. They are not obta<strong>in</strong>ed directly, but<br />

through creat<strong>in</strong>g a regular grid to repres<strong>en</strong>t the<br />

variable, itself obta<strong>in</strong>ed by an estimation<br />

60<br />

Fig. 27. Construction of a map, start<strong>in</strong>g from measurem<strong>en</strong>t po<strong>in</strong>ts.<br />

These maps are normally made by start<strong>in</strong>g from the<br />

values of the variable as measured with<strong>in</strong> the area.<br />

For example, from the <strong>in</strong>itial situation shown <strong>in</strong><br />

Fig. 27a, which repres<strong>en</strong>ts the location of the<br />

samples and the measured values of a variable, we<br />

aim to build an iso-value contour map such as that<br />

shown <strong>in</strong> Fig. 27b. Note the non-uniform<br />

distribution of the samples <strong>in</strong> the example.<br />

calculation (Fig. 28a). The contour l<strong>in</strong>es are created<br />

by <strong>in</strong>terpolat<strong>in</strong>g the values on the mesh axes (Fig.<br />

28b). It is thus clear that the quality of the map is<br />

wholly dep<strong>en</strong>d<strong>en</strong>t on the equation that produced the<br />

grid values.<br />

Fig. 28. Construction of a vector map: a) reconstruction of the variable to a regular grid;<br />

b) <strong>in</strong>terpolation trac<strong>in</strong>g of the iso-value l<strong>in</strong>es.


3.2.3 Geostatistical analysis applied to<br />

the distribution of <strong>in</strong>organic <strong>elem<strong>en</strong>ts</strong> <strong>in</strong><br />

soil and <strong>in</strong> fungi<br />

For this book, our geostatistical analysis was<br />

focused on the follow<strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> or physiochemical<br />

parameters found <strong>in</strong> the surface soil and<br />

<strong>in</strong> <strong>mushrooms</strong> gathered <strong>in</strong> the Prov<strong>in</strong>ce of Reggio<br />

Emilia: pH, alum<strong>in</strong>ium, ars<strong>en</strong>ic, cadmium,<br />

chromium, mercury, nickel, lead, copper, sel<strong>en</strong>ium,<br />

vanadium, z<strong>in</strong>c and zirconium. Irregular gridpattern<br />

sampl<strong>in</strong>g was carried out over a large area<br />

<strong>in</strong> the southern part of the prov<strong>in</strong>ce of Reggio<br />

Emilia.<br />

An exploratory analysis of experim<strong>en</strong>tal data us<strong>in</strong>g<br />

basic statistics was carried out, along with data<br />

frequ<strong>en</strong>cy distributions and experim<strong>en</strong>tal<br />

variograms. All <strong>elem<strong>en</strong>ts</strong> tested showed a t<strong>en</strong>d<strong>en</strong>cy<br />

to lognormal distribution, characterised by the<br />

pres<strong>en</strong>ce of a small number of sampl<strong>in</strong>g po<strong>in</strong>ts with<br />

values of betwe<strong>en</strong> one to two orders of magnitude<br />

greater than the database. Analysis of the spatial<br />

correlation of the data was conducted by<br />

In some cases, a logarithmic transformation of data<br />

was applied to normalise distributions and to<br />

clarify the spatial correlation, by <strong>in</strong>sert<strong>in</strong>g a new<br />

transformation <strong>in</strong> the orig<strong>in</strong>al scale of the estimate<br />

data.<br />

The figures, relat<strong>in</strong>g to the spatial distribution of<br />

conc<strong>en</strong>tration parameters, were g<strong>en</strong>erated with the<br />

program Surfer 8.0, while the data grid was<br />

Table 3. Classification of variograms used.<br />

calculat<strong>in</strong>g the experim<strong>en</strong>tal variogram, which was<br />

th<strong>en</strong> used to develop a model of <strong>in</strong>terpolation<br />

accord<strong>in</strong>g to the Krig<strong>in</strong>g method (Isaaks and<br />

Srivastava, 1989) for the methodological<br />

framework and Carlon et al. (2000), for specific<br />

application to contam<strong>in</strong>ated soils.<br />

The spatial correlation of the data were g<strong>en</strong>erally<br />

good and proved suffici<strong>en</strong>t to furnish an<br />

<strong>in</strong>terpolation function. In a few cases however, the<br />

correlation was very weak, return<strong>in</strong>g a spatial<br />

repres<strong>en</strong>tation of the data which was too low to<br />

allow an estimate of the distribution of the chemical<br />

<strong>elem<strong>en</strong>ts</strong> by <strong>in</strong>terpolation. In these cases, the<br />

distribution of <strong>elem<strong>en</strong>ts</strong> cannot be repres<strong>en</strong>ted by a<br />

vector map, but <strong>in</strong>stead by maps of sampl<strong>in</strong>g po<strong>in</strong>ts<br />

divided by differ<strong>en</strong>t classes of conc<strong>en</strong>tration.<br />

The experim<strong>en</strong>tal variograms were modelled with<br />

spherical functions characterised by the range, sill<br />

and nugget values shown <strong>in</strong> Table 3, a value of zero<br />

<strong>in</strong>tercept was imposed at the outset (nugget = 0) <strong>in</strong><br />

order to honour the measured values.<br />

obta<strong>in</strong>ed by Krig<strong>in</strong>g (Isaaks and Srivastava, 1989;<br />

Clark and Harper, 2004). The variographic model<br />

was tested by cross-validation. The data provided<br />

relate to the sampl<strong>in</strong>g and chemical analysis<br />

procedures as described <strong>in</strong> previous chapters, and<br />

they are all listed <strong>in</strong> the attachm<strong>en</strong>ts to this<br />

docum<strong>en</strong>t.<br />

61


4.1 Methods for chemical<br />

analysis: soil and macromycete<br />

carpophores<br />

4.1.1 Carpophores<br />

For a mean<strong>in</strong>gful comparison of analytical results it<br />

is important to consider the degree of maturity at<br />

harvest of the carpophores that were used to<br />

determ<strong>in</strong>e the conc<strong>en</strong>tration of <strong>in</strong>organic <strong>elem<strong>en</strong>ts</strong>.<br />

Based on experi<strong>en</strong>ce and the standard practice<br />

followed by many mycologists, maturity can only<br />

be estimated empirically as there are no analytical<br />

methods to measure this parameter. Nevertheless,<br />

the empirical method that assigns "numbers" to the<br />

various stages of carpophore maturity comb<strong>in</strong>ed<br />

with the experi<strong>en</strong>ce of the mycologist works quite<br />

well and certa<strong>in</strong>ly contributes to reduc<strong>in</strong>g the errors<br />

that could arise through variations of chemical<br />

conc<strong>en</strong>trations due to the vary<strong>in</strong>g age of<br />

carpophores. The scale used is as follows:<br />

1. Primordial (carpophore is still <strong>in</strong> embryonic<br />

form)<br />

2. Young (carpophore already formed, with<br />

hym<strong>en</strong>ium not exposed to air <strong>in</strong> carpophores<br />

hav<strong>in</strong>g a secondary veil like a cloak or a r<strong>in</strong>g)<br />

3. Almost mature (spores beg<strong>in</strong> to mature and<br />

the hym<strong>en</strong>ium is completely exposed to the<br />

air)<br />

4. Mature (the spores are ripe and <strong>in</strong> most<br />

species the hym<strong>en</strong>ium takes on the colour of a<br />

spore)<br />

5. Old (the first signs of deterioration or<br />

putrefaction have set <strong>in</strong>)<br />

It is clear that a more-ref<strong>in</strong>ed evaluation (by use of<br />

half numbers) is the highest degree of s<strong>en</strong>sitivity<br />

that this empirical scale of carpophore maturity<br />

could atta<strong>in</strong>.<br />

Most of the carpophores analysed dur<strong>in</strong>g this study<br />

had a maturity-level of 4, therefore mature<br />

carpophores formed the basis of the study.<br />

Chapter IV<br />

Materials and Methods<br />

After be<strong>in</strong>g gathered, the carpophores were very<br />

carefully cleaned with special, soft brushes to<br />

remove any soil or sand particles, plant debris,<br />

<strong>in</strong>sects, larvae or other material. After clean<strong>in</strong>g, the<br />

carpophores were roughly cut <strong>in</strong>to slices to verify<br />

that there was no foreign material on the <strong>in</strong>side<br />

either.<br />

At this stage the amount of fungal material to be<br />

dried was weighed out: 20 grams can usually be<br />

considered suffici<strong>en</strong>t. Dur<strong>in</strong>g this operation it was<br />

important to ma<strong>in</strong>ta<strong>in</strong> the real weight proportions<br />

betwe<strong>en</strong> the differ<strong>en</strong>t parts of each carpophore<br />

(stem, cap, hym<strong>en</strong>ium). The cut material was th<strong>en</strong><br />

set <strong>in</strong> a crystallizer and placed <strong>in</strong> a v<strong>en</strong>tilated ov<strong>en</strong><br />

at a temperature of 45°C for 48 hours. At the same<br />

time, for a small number of samples, dry<strong>in</strong>g was<br />

carried out at 105°C to measure water loss.<br />

Mushrooms were not kept for longer than<br />

necessary <strong>in</strong> contact with metal objects to avoid<br />

contam<strong>in</strong>at<strong>in</strong>g the samples, especially wh<strong>en</strong> damp.<br />

Instead we made use of other tools and treatm<strong>en</strong>t<br />

methods that <strong>in</strong>volved plastic or glass tools.<br />

After be<strong>in</strong>g dried at 45 o C the samples were ground<br />

with an agate pestle and mortar and the ground part<br />

was th<strong>en</strong> put <strong>in</strong>to a pre-washed polyethyl<strong>en</strong>e<br />

conta<strong>in</strong>er with two stoppers. Into this receptacle we<br />

put a 10 mm-diameter sphere of Teflon or glass to<br />

homog<strong>en</strong>ise each sample before weigh<strong>in</strong>g and<br />

before follow<strong>in</strong>g treatm<strong>en</strong>ts.<br />

The acid m<strong>in</strong>eralisation of all carpophores was<br />

performed by plac<strong>in</strong>g a quantity of sample<br />

weigh<strong>in</strong>g 0.5-0.7 grams <strong>in</strong> a microwave ov<strong>en</strong> with<br />

aqua regia. After m<strong>in</strong>eralisation, the sample was<br />

<strong>in</strong>creased to 50 ml <strong>in</strong> a volumetric flask with<br />

ultrapure H2O (C<strong>en</strong>ci et al., 2008).<br />

The quantitative determ<strong>in</strong>ation of all <strong>elem<strong>en</strong>ts</strong><br />

(except Hg) was performed with a ICP-AES Perk<strong>in</strong><br />

Elmer Optima 3000 XL spectrophotometer. The<br />

determ<strong>in</strong>ation of mercury was performed us<strong>in</strong>g an<br />

Perk<strong>in</strong> Elmer FIMS 100 atomic absorption<br />

spectrophotometer designed for cold-vapour<br />

mercury determ<strong>in</strong>ation.<br />

The preparation of calibration standards was<br />

carried out start<strong>in</strong>g from certified ultrapure monoelem<strong>en</strong>t<br />

solutions of 1000 mg/l by ICP <strong>in</strong>strum<strong>en</strong>ts.<br />

63


Certified Refer<strong>en</strong>ce Materials (NBS and SRM)<br />

with a matrix similar to that of fungi were<br />

m<strong>in</strong>eralised and subsequ<strong>en</strong>tly analysed. The<br />

conc<strong>en</strong>tration levels obta<strong>in</strong>ed were with<strong>in</strong> tolerance<br />

<strong>in</strong>tervals.<br />

4.1.2 Soil<br />

At the base of the carpophore stems 4-5 cubes of<br />

soil, each measur<strong>in</strong>g 5x5x5 cm, were collected and<br />

all grass, stones, leaves and other matter were<br />

immediately removed.<br />

The soil samples were subsequ<strong>en</strong>tly placed <strong>in</strong><br />

plastic bags and mixed manually to form a s<strong>in</strong>gle<br />

sample. In the laboratory each sample was dried<br />

and th<strong>en</strong> passed through a 2 mm sieve. The<br />

particles of the sample which were equal to or<br />

smaller than 2mm were th<strong>en</strong> ground with a mortar<br />

and pestle and th<strong>en</strong> placed <strong>in</strong> polyethyl<strong>en</strong>e bags, as<br />

was the case for the mushroom samples; likewise,<br />

64<br />

Table 4. detection limits (d.l.) expressed <strong>in</strong> mg/kg.<br />

the m<strong>in</strong>eralisation process was also carried out <strong>in</strong><br />

the same way as for the <strong>mushrooms</strong>.<br />

Determ<strong>in</strong>ation of the conc<strong>en</strong>trations of the various<br />

<strong>elem<strong>en</strong>ts</strong> under <strong>in</strong>vestigation was carried out us<strong>in</strong>g<br />

the same analytical <strong>in</strong>strum<strong>en</strong>ts as for the<br />

mushroom carpophores.<br />

The Certified Refer<strong>en</strong>ce Materials for soil and<br />

sedim<strong>en</strong>t (CRM 141 R, Calcareous Loam Soil e<br />

CRM 277, Estuar<strong>in</strong>e Sedim<strong>en</strong>t) were m<strong>in</strong>eralised<br />

and subsequ<strong>en</strong>tly analysed. The conc<strong>en</strong>tration<br />

levels obta<strong>in</strong>ed were with<strong>in</strong> tolerance <strong>in</strong>tervals.<br />

4.1.3 Criteria for data collection<br />

Table four <strong>in</strong>dicates the elem<strong>en</strong>t-by-elem<strong>en</strong>t<br />

detection limits (d.l.) obta<strong>in</strong>ed by measur<strong>in</strong>g each<br />

sample t<strong>en</strong> times . The d.l. repres<strong>en</strong>ts the triple of<br />

the standard deviation. This criterion is widely used<br />

<strong>in</strong> analytical laboratories.<br />

d.l. d.l. d.l. d.l. d.l. d.l.<br />

Al 1 Cd 0.05 Cr 0.1 Hg 0.05 Cu 0.2 Ti 0.05<br />

Ag 0.05 Ca 2 Fe 0.1 Mo 0.2 Rb 0.5 V 0.1<br />

As 1 Cs 0.1 P 5 Ni 0.2 Se 2 Zn 0.2<br />

Ba 0.1 Cl 5 Mg 0.2 Pb 0.5 Na 3 Zr 0.05<br />

B 0.2 Co 0.1 Mn 0.05 K 500 Sr 0.3 S 10<br />

Wh<strong>en</strong> a measurem<strong>en</strong>t was less than the detection<br />

limit, a value equal to one t<strong>en</strong>th of the d.l. was<br />

<strong>en</strong>tered <strong>in</strong> the archive: this is because otherwise, <strong>in</strong><br />

our statistical analysis, it would not have be<strong>en</strong><br />

possible to dist<strong>in</strong>guish a cell with no value (where a<br />

measurem<strong>en</strong>t for that elem<strong>en</strong>t <strong>in</strong> that sample was<br />

not made) from a cell <strong>in</strong> which the measurem<strong>en</strong>t<br />

was less than the d.l..<br />

Although the tables show values for samples and/or<br />

<strong>elem<strong>en</strong>ts</strong> for which also very few measurem<strong>en</strong>ts<br />

were tak<strong>en</strong>, only samples and/or <strong>elem<strong>en</strong>ts</strong> hav<strong>in</strong>g at<br />

least 30 measurem<strong>en</strong>ts are to be considered reliable<br />

<strong>in</strong> this statistical analysis.<br />

4.2 Distribution map of <strong>elem<strong>en</strong>ts</strong><br />

<strong>in</strong> soil<br />

An exploration of the thematic maps result<strong>in</strong>g from<br />

our studies will now follow, aim<strong>in</strong>g to <strong>in</strong>terpret the<br />

spatial distribution of several <strong>in</strong>organic trace<br />

<strong>elem<strong>en</strong>ts</strong>, also known as persist<strong>en</strong>t <strong>in</strong>organic<br />

contam<strong>in</strong>ants. Furthermore, both alum<strong>in</strong>ium and<br />

the pH levels of surface soil will be tak<strong>en</strong> <strong>in</strong>to<br />

consideration.<br />

After appropriate treatm<strong>en</strong>t, around 180 samples of<br />

surface soil, tak<strong>en</strong> from depths of betwe<strong>en</strong> 0 to<br />

5cm, were used to assess conc<strong>en</strong>tration levels of<br />

alum<strong>in</strong>ium, ars<strong>en</strong>ic, cadmium, chromium, copper,<br />

mercury, nickel, lead, vanadium, sel<strong>en</strong>ium, z<strong>in</strong>c,<br />

zirconium, and pH levels.<br />

The area of <strong>in</strong>vestigation is repres<strong>en</strong>ted by the<br />

prov<strong>in</strong>ce of Reggio Emilia (Fig. 29), more<br />

precisely, start<strong>in</strong>g from State Road 9, (known as


Via Aemilia) to the Ap<strong>en</strong>n<strong>in</strong>e border with Tuscany,<br />

<strong>in</strong>clud<strong>in</strong>g a small area of the Tuscan-Emilian<br />

National Park.<br />

This area can be divided <strong>in</strong>to five sections start<strong>in</strong>g<br />

from the city of Reggio Emilia. In this segm<strong>en</strong>t of<br />

lowlands the towns Bibbiano, Cavriago and<br />

Montecchio are situated. Farther to the south is a<br />

narrow strip of land with hills spread out betwe<strong>en</strong><br />

the pla<strong>in</strong>s and the northern footpath. The towns<br />

which <strong>in</strong> part make up this area are: San Polo,<br />

Before comm<strong>en</strong>c<strong>in</strong>g with a description of the<br />

thematic maps perta<strong>in</strong><strong>in</strong>g to the <strong>elem<strong>en</strong>ts</strong> under<br />

study, it is important to emphasise that what is<br />

proposed and illustrated <strong>in</strong> the figures repres<strong>en</strong>ts<br />

conc<strong>en</strong>tration distributions. This aim to<br />

demonstrate the real conc<strong>en</strong>tration base levels.<br />

These are the sum of geochemical cont<strong>en</strong>ts,<br />

understood as purely natural ph<strong>en</strong>om<strong>en</strong>a, and<br />

conc<strong>en</strong>tration values due to anthropog<strong>en</strong>ic activity.<br />

Fig. 29. Geographical map of the Prov<strong>in</strong>ce of Reggio Emilia.<br />

Quattro Castella, Alb<strong>in</strong>ea, Scandiano and<br />

Casalgrande.<br />

Cont<strong>in</strong>u<strong>in</strong>g south, one comes across a wide hilly<br />

area. The towns it <strong>en</strong>compasses are Vezzano,<br />

Baiso, Viano and Canossa. The towns of Carp<strong>in</strong>eti,<br />

Toano, Vetto and Castelnovo nei Monti lie betwe<strong>en</strong><br />

the Enza and Dolo rivers. F<strong>in</strong>ally <strong>in</strong> the area with a<br />

purely mounta<strong>in</strong>ous morphology are the resort<br />

towns of Villa M<strong>in</strong>ozzo, Ligonchio Besana,<br />

Ramiseto and Collagna.<br />

For all twelve <strong>elem<strong>en</strong>ts</strong> under study, g<strong>en</strong>eral<br />

remarks can be made stat<strong>in</strong>g that the conc<strong>en</strong>tration<br />

distribution throughout Reggio Emilia is mostly<br />

monotonic and qualitatively comparable.<br />

In g<strong>en</strong>eral, the many human activities that have<br />

acted and are act<strong>in</strong>g on the Reggio Emilia area,<br />

have not left significant signs of contam<strong>in</strong>ation,<br />

furthermore, the data we have be<strong>en</strong> obta<strong>in</strong>ed are<br />

very similar to f<strong>in</strong>d<strong>in</strong>gs reported by Marks et al.<br />

(2009) <strong>in</strong> their study of the soil of Emilia Romagna.<br />

65


Further confirmation of this was provided by the<br />

chemical data obta<strong>in</strong>ed by analys<strong>in</strong>g the surface<br />

soils collected <strong>in</strong> Scandiano, Carp<strong>in</strong>eti, and their<br />

large surround<strong>in</strong>g areas. For most of the <strong>elem<strong>en</strong>ts</strong>,<br />

the conc<strong>en</strong>tration levels found dur<strong>in</strong>g this<br />

66<br />

monitor<strong>in</strong>g study yielded very similar results aga<strong>in</strong><br />

(C<strong>en</strong>ci et al., 2005).<br />

Alum<strong>in</strong>ium (Fig. 30) can be se<strong>en</strong> to have a rather<br />

homog<strong>en</strong>eous conc<strong>en</strong>tration distribution. Lower<br />

levels can be found <strong>in</strong> the hills.<br />

Fig. 30. Spatial distribution of the conc<strong>en</strong>tration levels of alum<strong>in</strong>ium (mg/kg dry weight) <strong>in</strong> surface soils.<br />

In the pla<strong>in</strong>s and mounta<strong>in</strong>s conc<strong>en</strong>trations are<br />

higher; this is ma<strong>in</strong>ly due to the geology of the<br />

area. Ars<strong>en</strong>ic (Fig. 31) mirrors the f<strong>in</strong>d<strong>in</strong>gs for<br />

alum<strong>in</strong>ium, while for cadmium (Fig. 32), there are<br />

two areas, San Polo d'Enza and Reggio Emilia,<br />

where one could reasonably expect to see<br />

significant man-made effects. For the rema<strong>in</strong><strong>in</strong>g<br />

part of the area, levels rema<strong>in</strong> rather uniform.<br />

Fig. 31. Spatial distribution of the conc<strong>en</strong>tration levels of ars<strong>en</strong>ic (mg/kg dry weight) <strong>in</strong> surface soils.


Fig. 32. Spatial distribution of the conc<strong>en</strong>tration levels of cadmium (mg/kg dry weight) <strong>in</strong> surface soils.<br />

Chromium and nickel (Fig. 33) have a very similar<br />

spatial distribution of conc<strong>en</strong>tration levels, as one<br />

would expect, and both are pres<strong>en</strong>t <strong>in</strong> the western<br />

zone, <strong>in</strong> two areas ly<strong>in</strong>g congru<strong>en</strong>t to ophiolitic<br />

ultramafic outcrops of the Enza bas<strong>in</strong>: the levels<br />

found here were quite high. The small area near<br />

State Road 9, which is already known for its high<br />

cadmium levels, should also be considered a po<strong>in</strong>t<br />

of contam<strong>in</strong>ation for chromium. Oft<strong>en</strong> chromium is<br />

found to be <strong>en</strong>riched with many <strong>elem<strong>en</strong>ts</strong>, but not<br />

nickel, which, <strong>in</strong> cases where there has be<strong>en</strong> a<br />

geog<strong>en</strong>ic malfunction, grows <strong>in</strong> proportion to the<br />

chromium.<br />

Fig. 33. Spatial distribution of the conc<strong>en</strong>tration levels of nickel (mg/kg dry weight) <strong>in</strong> surface soils.<br />

The <strong>elem<strong>en</strong>ts</strong> copper and mercury (Figs. 34 and 35)<br />

show a fairly uniform distribution of conc<strong>en</strong>tration<br />

levels which, as a whole, are fairly low. Only two<br />

localized areas <strong>in</strong> the mounta<strong>in</strong>s showed higherthan-expected<br />

levels, presumably due to local<br />

contam<strong>in</strong>ation.<br />

67


68<br />

Fig. 34. Spatial distribution of the conc<strong>en</strong>tration levels of copper (mg/kg dry weight) <strong>in</strong> surface soils.<br />

Fig. 35. Spatial distribution of the conc<strong>en</strong>tration levels of mercury (mg/kg dry weight) <strong>in</strong> surface soils.<br />

The spatial distribution of the conc<strong>en</strong>tration levels<br />

of lead were also fairly homog<strong>en</strong>eous throughout<br />

the territory (Fig. 36); such values suggest a<br />

g<strong>en</strong>eral <strong>en</strong>richm<strong>en</strong>t due to contribution by man.<br />

There are two areas that have certa<strong>in</strong>ly be<strong>en</strong><br />

“contam<strong>in</strong>ated”: one near State Road 9 and the<br />

other <strong>in</strong> the Baiso area.<br />

For vanadium and sel<strong>en</strong>ium, the Ap<strong>en</strong>n<strong>in</strong>e area<br />

appears to have lower conc<strong>en</strong>tration levels, the<br />

latter also be<strong>in</strong>g conf<strong>in</strong>ed to the mounta<strong>in</strong>ous areas.<br />

The largest conc<strong>en</strong>tration levels are diametrically<br />

opposed: high values for sel<strong>en</strong>ium were found <strong>in</strong><br />

the pla<strong>in</strong>s, while for vanadium, high levels were<br />

observed <strong>in</strong> the mounta<strong>in</strong>s. Regard<strong>in</strong>g the latter,<br />

there appears to be also a localised contam<strong>in</strong>ation<br />

<strong>in</strong> this area (near Reggio Emilia and State Road 9)<br />

of cadmium, chromium and lead.


Fig. 36. Spatial distribution of the conc<strong>en</strong>tration levels of lead (mg/kg dry weight) <strong>in</strong> surface soils.<br />

For z<strong>in</strong>c, as with cadmium, chromium, lead and<br />

vanadium; soil contam<strong>in</strong>ation is found near State<br />

Road 9. The rema<strong>in</strong><strong>in</strong>g area conta<strong>in</strong>s practically<br />

uniform conc<strong>en</strong>tration levels, except for the higher<br />

levels found <strong>in</strong> the mounta<strong>in</strong>ous ranges to the east.<br />

Low conc<strong>en</strong>tration levels were found consist<strong>en</strong>tly<br />

for zirconium and it was only <strong>in</strong> the Ap<strong>en</strong>n<strong>in</strong>es that<br />

higher conc<strong>en</strong>trations of it were registered. The<br />

zirconium levels observed <strong>in</strong> this study are on<br />

Fig. 37. Spatial distribution of pH levels <strong>in</strong> surface soils.<br />

average one order of magnitude lower than those<br />

obta<strong>in</strong>ed by Marchi et al. (2009).<br />

Lastly, the acidity levels of Reggio Emilia soils<br />

measured spatially (Fig. 37) are considered.<br />

Throughout most of the territory pH levels of<br />

around 6.5 are the norm. In two areas, one located<br />

<strong>in</strong> the mounta<strong>in</strong>s and the other <strong>in</strong> the south, there<br />

are more acidic soils, while those <strong>in</strong> the Ap<strong>en</strong>n<strong>in</strong>es<br />

t<strong>en</strong>d toward neutral-alkal<strong>in</strong>e pH.<br />

69


4.3 Distribution map of <strong>elem<strong>en</strong>ts</strong><br />

<strong>in</strong> <strong>mushrooms</strong><br />

Heavy metals can be regarded as one of the ma<strong>in</strong><br />

sources of <strong>en</strong>vironm<strong>en</strong>tal pollution. For several<br />

decades the output of heavy metals <strong>in</strong>to the<br />

<strong>en</strong>vironm<strong>en</strong>t due to human activity exceeded those<br />

of natural orig<strong>in</strong> such as volcanic eruptions and<br />

large forest fires. A large part of these persist<strong>en</strong>t<br />

<strong>in</strong>organic contam<strong>in</strong>ants <strong>en</strong>ds up <strong>in</strong> the soil,<br />

<strong>in</strong>creas<strong>in</strong>g chemical elem<strong>en</strong>t conc<strong>en</strong>tration levels.<br />

The soil, thus <strong>en</strong>riched with heavy metals, may, as<br />

a result of leach<strong>in</strong>g processes, allow some of these<br />

metals to leak <strong>in</strong>to groundwater tables. The fact<br />

that <strong>mushrooms</strong> are bioaccumulators means that<br />

their fruit<strong>in</strong>g bodies may take on these<br />

contam<strong>in</strong>ants and pass them on to animal biota –<br />

with pot<strong>en</strong>tially hazardous results for humans.<br />

Regard<strong>in</strong>g the heavy-metal and macro-elem<strong>en</strong>t<br />

conc<strong>en</strong>tration levels which accumulate <strong>in</strong><br />

<strong>mushrooms</strong>, they can dep<strong>en</strong>d on and be <strong>in</strong>flu<strong>en</strong>ced<br />

by factors such as soil type and the conc<strong>en</strong>tration<br />

levels of the metals. It should be noted that<br />

conc<strong>en</strong>trations of heavy metals <strong>in</strong> soils, <strong>in</strong> this<br />

study area of the prov<strong>in</strong>ce of Reggio Emilia, are<br />

completely consist<strong>en</strong>t with the geology of the area<br />

(Marchi, pers. comm., 2010).<br />

Other factors that may affect this accumulation are<br />

the chemical forms of the heavy metals <strong>in</strong>volved,<br />

the cont<strong>en</strong>t of organic matter and the conc<strong>en</strong>tration<br />

of hydrog<strong>en</strong> ions <strong>in</strong> the soil, and many other factors<br />

(Garcia et al., 2009) that, together, may play a<br />

decisive role <strong>in</strong> the process of bioaccumulation.<br />

Other aspects relate to the g<strong>en</strong>era and species of<br />

<strong>mushrooms</strong>, and which are able to bioaccumulate<br />

heavy metals, and to what degree. It should also be<br />

remembered that aspects such as d<strong>en</strong>sity, depth and<br />

age of the fungal mycelia; their lifecycles that can<br />

last for months to years – all these factors affect the<br />

growth of fungal fruit<strong>in</strong>g bodies (carpophores),<br />

affect<strong>in</strong>g and condition<strong>in</strong>g the processes of<br />

bioaccumulation. Knowledge about the<br />

mechanisms which transport heavy metals from the<br />

soil-substrate to the mycelium and from th<strong>en</strong>ce to<br />

the carpophores, however, are as yet poorly<br />

understood (Svoboda and Kalač, 2000).<br />

The data collection <strong>in</strong> this book is really quite vast,<br />

with more than 9,000 carpophore samples collected<br />

from all over Italy, correspond<strong>in</strong>g to a universe of<br />

about 1,000 species of fungi. For each sample the<br />

conc<strong>en</strong>trations of 32 <strong>elem<strong>en</strong>ts</strong> were quantified. In<br />

70<br />

addition, approximately 350 surface soil samples<br />

were exam<strong>in</strong>ed so as to obta<strong>in</strong> a better<br />

<strong>in</strong>terpretation of bioaccumulation processes. For<br />

the surface soil samples, <strong>in</strong> addition to the 32<br />

<strong>elem<strong>en</strong>ts</strong>, their respective conc<strong>en</strong>trations of<br />

hydrog<strong>en</strong> ions were evaluated.<br />

The graphic repres<strong>en</strong>tation of over 300,000 sample<br />

data cannot be shown and discussed <strong>in</strong> a<br />

compreh<strong>en</strong>sive way here; therefore it was decided<br />

to pres<strong>en</strong>t, evaluate and <strong>in</strong>terpret data only for areas<br />

<strong>in</strong> the prov<strong>in</strong>ce of Reggio Emilia where carpophore<br />

collection was carried out with greatest <strong>in</strong>t<strong>en</strong>sity.<br />

These zones ext<strong>en</strong>d from State Road 9 up to the<br />

southern ridge of the Tosco Emiliano Ap<strong>en</strong>n<strong>in</strong>es<br />

and <strong>in</strong>clude areas of the Tuscan mounta<strong>in</strong>side (Alta<br />

Garfagnana and Lunigiana).<br />

We selected for exam<strong>in</strong>ation the <strong>elem<strong>en</strong>ts</strong> which,<br />

based on the sci<strong>en</strong>tific data and literature to hand,<br />

were the most significant and highly-studied:<br />

alum<strong>in</strong>ium (Al), ars<strong>en</strong>ic (As), cadmium (Cd),<br />

chromium (Cr), copper (Cu), mercury (Hg), nickel<br />

(Ni), lead (Pb) and z<strong>in</strong>c (Zn). Sel<strong>en</strong>ium (Se) was<br />

only exam<strong>in</strong>ed for Boletus edulis, as it is not found<br />

to a significant degree <strong>in</strong> other taxa; Vanadium (V)<br />

and zirconium (Zr) that were <strong>in</strong>vestigated only for<br />

Amanita muscaria (L.) Lam., as they were not<br />

found to a significant degree <strong>in</strong> any other taxa.<br />

Also <strong>in</strong>cluded <strong>in</strong> the study were those taxa that had<br />

an "abundance" of suffici<strong>en</strong>tly large sample groups<br />

(a total of 24,000 conc<strong>en</strong>tration level values) <strong>in</strong><br />

order to create distribution maps for the average,<br />

m<strong>in</strong>imum and maximum conc<strong>en</strong>tration values,<br />

thereby form<strong>in</strong>g a complete overview, which is<br />

summarised <strong>in</strong> Table 5.<br />

� Subdivision Basidiomycot<strong>in</strong>a - Subclass<br />

Agaricomycetideae<br />

• Order Tricholomatales and its G<strong>en</strong>us<br />

Clitocybe.<br />

• G<strong>en</strong>us Amanita and the species Am.<br />

Muscaria.<br />

• G<strong>en</strong>us Russula.<br />

• G<strong>en</strong>us Agaricus and the sections<br />

Bitorques [Subg<strong>en</strong>us Agaricus (L. : Fr.)<br />

He<strong>in</strong>em.] and Arv<strong>en</strong>ses [SottoG<strong>en</strong>us<br />

Flavoagaricus Wasser].<br />

• Group of Boletus edulis (B. aereus, B.<br />

reticulatus, B. edulis, B. P<strong>in</strong>ophilus).


� Subdivision Basidiomycot<strong>in</strong>a - Subclass<br />

Aphyllophoromycetideae<br />

• G<strong>en</strong>us Cantharellus.<br />

• G<strong>en</strong>us Ramaria.<br />

� Subdivision Ascomycot<strong>in</strong>a - Subclass<br />

Pezizomycetideae<br />

• G<strong>en</strong>us Morchella.<br />

Table 5. average, m<strong>in</strong>imum and maximum values for the <strong>elem<strong>en</strong>ts</strong> analysed relative to taxa <strong>in</strong>cluded <strong>in</strong> the study.<br />

Order Tricholomatales<br />

Order Tricholomatales<br />

G<strong>en</strong>us Clitocybe<br />

G<strong>en</strong>us Amanita<br />

Amanita muscaria<br />

G<strong>en</strong>us Russula<br />

G<strong>en</strong>us Agaricus<br />

G<strong>en</strong>us Agaricus<br />

Section Bitorques<br />

G<strong>en</strong>us Agaricus<br />

Section Arv<strong>en</strong>ses<br />

G<strong>en</strong>us Boletus<br />

Gruppo B. edulis<br />

G<strong>en</strong>us Cantharellus<br />

G<strong>en</strong>us Ramaria<br />

G<strong>en</strong>us Morchella<br />

The discussion deals separately with each of the<br />

various taxa considered. Below, there are<br />

distribution maps of certa<strong>in</strong> <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> conjunction<br />

with evaluations regard<strong>in</strong>g differ<strong>en</strong>t<br />

<strong>en</strong>richm<strong>en</strong>t factors and with data obta<strong>in</strong>ed from<br />

analysis of the pr<strong>in</strong>cipal compon<strong>en</strong>ts of this study.<br />

Al As Cd Cr Cu Hg Ni Pb Zn Se V Zr<br />

Average 217 1.0 2.37 1.94 36.4 0.35 1.37 0.94 157 - - -<br />

m<strong>in</strong> Value 16 0.1 0.09 0.10 4.0 0.01 0.14 0.05 50.0 - - -<br />

Max Value 2400 59 14.5 63.5 93.0 4.0 24.5 18.8 340 - - -<br />

Average 178 0.4 1.08 1.26 93.7 2.24 1.44 1.97 98.2 - - -<br />

m<strong>in</strong> Value 6 0.1 0.30 0.10 33.0 0.37 0.20 0.05 65.0 - - -<br />

Max Value 1520 9.0 3.88 5.30 319 6.00 5.00 21.5 165 - - -<br />

Average 334 0.2 5.02 2.03 63.6 1.19 1.37 1.32 131 - - -<br />

m<strong>in</strong> Value 13 0.1 0.12 0.01 6.0 0.01 0.02 0.05 20.0 - - -<br />

Max Value 3410 7.0 33.4 29.9 740 24.3 10.1 64.3 328 - - -<br />

Average 225 0.4 12.2 1.01 31.7 0.73 0.84 0.91 138 - 99.0 4.66<br />

m<strong>in</strong> Value 33 0.1 2.74 0.10 6.0 0.20 0.02 0.05 58.0 - 12.5 0.05<br />

Max value 1500 2.0 33.4 4.90 69.0 2.55 3.30 19.1 280 - 195 19.4<br />

Average 288 0.2 3.33 1.06 53.7 0.52 1.69 1.83 91.0 - - -<br />

m<strong>in</strong> Value 11 0.1 0.08 0.01 10.0 0.01 0.20 0.05 21.0 - - -<br />

Max Value 2940 7.0 24.6 6.10 189 4.06 13.5 53.6 864 - - -<br />

Average 488 0.1 1.58 6.07 161 2.29 3.15 1.09 110 - - -<br />

m<strong>in</strong> Value 113 0.1 0.12 0.20 33.0 0.19 0.20 0.05 47.0 - - -<br />

Max Value 1290 1.0 5.83 125 934 7.26 27.0 3.70 203 - - -<br />

Average 539 0.3 1.99 1.90 132 5.25 2.89 3.94 100 - - -<br />

m<strong>in</strong> Value 61 0.1 0.25 0.10 20.0 0.12 0.20 0.05 46.0 - - -<br />

Max Value 2770 4.0 9.20 7.40 812 25.3 14.1 29.5 273 - - -<br />

Average 119 1.5 40.9 0.74 188 4.99 2.39 2.52 156 - - -<br />

m<strong>in</strong> Value 9 0.1 0.05 0.01 27.0 0.43 0.20 0.05 50.0 - - -<br />

Max Value 797 21 391 10.9 1410 19.3 14.3 22.7 361 - - -<br />

Average 252 0.1 3.52 1.52 37.3 3.52 2.49 0.80 138 51.2 - -<br />

m<strong>in</strong> Value 3 0.1 0.34 0.10 5.0 0.13 0.75 0.05 28.0 5.0 - -<br />

Max Value 2490 3.0 15.7 22.1 98.0 28.9 16.6 9.10 447 223 - -<br />

Average 270 0.1 0.49 2.91 42.9 0.23 2.33 1.97 71.3 - - -<br />

m<strong>in</strong> Value 26 0.1 0.09 0.10 15.0 0.01 0.20 0.05 28.0 - - -<br />

Max Value 1360 0.1 2.87 57.3 111 1.44 28.6 5.50 143 - - -<br />

Average 327 8.7 5.74 3.54 51.4 0.99 10.19 0.98 71.1 - - -<br />

m<strong>in</strong> Value 10 0.1 0.52 0.30 19.0 0.01 1.10 0.05 31.0 - - -<br />

Max Value 970 40 32.3 28.6 244 8.23 48.3 3.20 167 - - -<br />

Average 709 0.1 0.94 3.27 53.6 0.09 2.40 1.19 144 - - -<br />

m<strong>in</strong> Value 21 0.1 0.19 0.20 11.0 0.01 0.40 0.05 60.0 - - -<br />

Max Value 6100 3.0 4.12 30.7 123 0.25 12.2 11.0 281 - - -<br />

4.3.1 Order Tricholomatales<br />

(Subdivision Basidiomycot<strong>in</strong>a – Subclass<br />

Agaricomycetideae)<br />

The distribution maps for the <strong>elem<strong>en</strong>ts</strong> ars<strong>en</strong>ic,<br />

cadmium, chromium, copper, mercury, nickel, lead<br />

and z<strong>in</strong>c, were far from uniform. Alum<strong>in</strong>ium,<br />

71


chromium and nickel t<strong>en</strong>d to have a similar<br />

conc<strong>en</strong>tration distribution and are g<strong>en</strong>erally<br />

consist<strong>en</strong>t throughout, but it is <strong>in</strong>terest<strong>in</strong>g to note<br />

that for chromium and nickel there is a strong<br />

overlap with the distribution maps of soil. Figs. 38<br />

and 39, that show copper and z<strong>in</strong>c, highlight<br />

Cadmium, mercury and lead (figs. 40, 41 and 42)<br />

have higher levels <strong>in</strong> hilly areas and, only for<br />

cadmium, ev<strong>en</strong> <strong>in</strong> the mounta<strong>in</strong>ous border with<br />

Tuscany.<br />

72<br />

Fig. 38. Spatial distribution of copper for the order Tricholomatales.<br />

Fig. 39. Spatial distribution of z<strong>in</strong>c for the order Tricholomatales.<br />

common areas where conc<strong>en</strong>trations are similar <strong>in</strong><br />

proportion. In the Alb<strong>in</strong>ea and Quattro Castella<br />

areas, maximum conc<strong>en</strong>tration levels for ars<strong>en</strong>ic<br />

were observed. Regard<strong>in</strong>g pH, areas with more<br />

highly-acidic soils display correspond<strong>in</strong>gly high<br />

levels of copper and z<strong>in</strong>c.<br />

Cadmium: the average conc<strong>en</strong>tration level was 2.37<br />

mg/kg. Slightly lower levels (1.67 mg/kg) were<br />

found east of the Black Sea (Demirbaş, 2001),<br />

while also <strong>in</strong> Turkey (Soylak et al., 2005) <strong>in</strong> Ma.


oreades and T. argyraceum 0.63 and 0.91 mg/kg<br />

were found. In the same area Yamaç et al. (2007)<br />

repeatedly found 0.58 and 1.99 mg/kg <strong>in</strong> I.<br />

geotropa and T. equestre. In the area of Epirus and<br />

Mercury: the average level of mercury was<br />

0.35mg/kg; this is far lower than <strong>in</strong> the Czech<br />

Republic <strong>in</strong> the proximity of silver m<strong>in</strong>es, where<br />

Svoboda et al. (2006) found levels of 10.5 and 8.9<br />

Lead: the average conc<strong>en</strong>tration level was 0.94<br />

mg/kg. In an area east of the Black Sea, a level of<br />

0.06 mg/kg was observed <strong>in</strong> the species T. terreum<br />

Fig. 40. Spatial distribution of cadmium for the order Tricholomatales.<br />

Fig. 41. Spatial distribution of mercury for the order Tricholomatales.<br />

Macedonia, Ouzoun et al. (2009) found,<br />

respectively, conc<strong>en</strong>trations of 1.8, 1.67 and 0.25<br />

mg/kg <strong>in</strong> three species, Ar. tabesc<strong>en</strong>s, Ar. mellea<br />

and T. rutilans.<br />

mg/kg <strong>in</strong> Le. nuda and Ar. mellea respectively. On<br />

the other hand, <strong>in</strong> Turkey, levels of 0.07 and 0.09<br />

mg/kg (Demirbaş, 2000) were recorded <strong>in</strong><br />

La. laccata and T. terreum.<br />

(Demirbaş, 2001). In a rec<strong>en</strong>t study, significantly<br />

higher values were observed <strong>in</strong> c<strong>en</strong>tral Spa<strong>in</strong> by<br />

Campos et al. (2009).<br />

73


Dur<strong>in</strong>g analysis of I. geotropa, T. ustaloides and<br />

T. rutilans, the authors found levels of 4.73; 3.33<br />

and 3.23 mg/kg respectively (although the method<br />

of measurem<strong>en</strong>t used should be considered here).<br />

In the Black Sea area, Sesli et al. (2008) found a<br />

conc<strong>en</strong>tration of 2.6 mg/kg <strong>in</strong> Le. nuda. Demirbaş<br />

(2001) <strong>in</strong> the same area, found levels of 2.43 mg/kg<br />

<strong>in</strong> the species T. terreum, while a level of 0.86<br />

mg/kg was found <strong>in</strong> La. laccata (Demirbaş, 2000).<br />

In Turkey, Yamaç et al. (2007) found 1.22 and<br />

1.59 mg/kg <strong>in</strong> I. geotropa and T. equestre<br />

respectively.<br />

The <strong>en</strong>richm<strong>en</strong>t-factor levels show that the<br />

<strong>elem<strong>en</strong>ts</strong> t<strong>en</strong>d to accumulate <strong>in</strong> carpophores and<br />

their accumulation usually varies with fungal<br />

species. In g<strong>en</strong>eral it was observed that ars<strong>en</strong>ic,<br />

chromium, nickel and lead do not t<strong>en</strong>d to<br />

accumulate <strong>in</strong> the fungi of this order, despite the<br />

soil be<strong>in</strong>g rich <strong>in</strong> them (Kalač and Svobova, 2000;<br />

García et al., 2009). In contrast, cadmium, copper,<br />

mercury and z<strong>in</strong>c can accumulate <strong>in</strong> carpophores,<br />

with above average conc<strong>en</strong>tration factors, ev<strong>en</strong><br />

wh<strong>en</strong> the soil only holds low conc<strong>en</strong>trations. This<br />

has be<strong>en</strong> further confirmed for mercury (Falandysz<br />

et al., 2002).<br />

In addition, Kalač and Svobova (2000), found<br />

<strong>en</strong>richm<strong>en</strong>t factors equal to 50-300 and 30-500 for<br />

74<br />

Fig. 42. Spatial distribution of lead for the order Tricholomatales.<br />

In accordance with our own f<strong>in</strong>d<strong>in</strong>gs, <strong>in</strong> Macedonia<br />

and <strong>in</strong> the area of Epirus, Ouzouni et al. (2009),<br />

found levels of 0.79; 0.49 and 1.16 mg/kg <strong>in</strong><br />

Ar. tabesc<strong>en</strong>s, Ar. mellea and Le. nuda<br />

respectively, while <strong>in</strong> Turkey (Soylak et al., 2005)<br />

levels of 1.05 and 1.89 mg/kg were recorded <strong>in</strong> Ma.<br />

oreades and T. argyraceum. In France; <strong>in</strong> the area<br />

surround<strong>in</strong>g Paris, C. nebularis, Ma. oreades and<br />

T. terreum were found to have levels equal to 42.5;<br />

33.6 and 24.3 mg/kg.<br />

cadmium and mercury and 0.1-0.2 for lead, as<br />

previously observed by Kalač et al. (1989b).<br />

The results obta<strong>in</strong>ed from pr<strong>in</strong>cipal compon<strong>en</strong>t<br />

analysis are pres<strong>en</strong>ted <strong>in</strong> Table 6. The first three<br />

compon<strong>en</strong>ts describe 63% of the total variance. In<br />

the first compon<strong>en</strong>t, soil acidity does not seem to<br />

affect the <strong>in</strong>crease <strong>in</strong> cadmium, chromium, copper<br />

and z<strong>in</strong>c; this is <strong>in</strong> contrast to the behaviour of lead<br />

as described by Kalač and Svobova (2000). Ma<strong>in</strong><br />

compon<strong>en</strong>t 2 describes the relationship betwe<strong>en</strong><br />

nickel, cadmium, mercury and lead that t<strong>en</strong>d to<br />

build up under moderately acidic conditions.<br />

Cadmium, mercury and lead are all typically<br />

affected by human activities. The third compon<strong>en</strong>t<br />

describes the relationship betwe<strong>en</strong> alkal<strong>in</strong>ity of the<br />

soil and high levels of ars<strong>en</strong>ic bioaccumulation.


4.3.2 G<strong>en</strong>us Clitocybe (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

– Order Tricholomatales)<br />

The g<strong>en</strong>us Clitocybe, as a whole and also for<br />

selected species, will be exam<strong>in</strong>ed here <strong>in</strong><br />

comparison with species from the order<br />

Tricholomatales. In the g<strong>en</strong>us Clitocybe, spatial<br />

distribution of elem<strong>en</strong>t conc<strong>en</strong>trations displays two<br />

types of associations. The first is repres<strong>en</strong>ted by<br />

chromium, nickel and z<strong>in</strong>c with maximum levels of<br />

5.3, 6 and 165 mg/kg, respectively which were<br />

observed <strong>in</strong> the areas of Toano and Reggio Emilia.<br />

The total rema<strong>in</strong><strong>in</strong>g area, with the exception of z<strong>in</strong>c<br />

conc<strong>en</strong>trations <strong>in</strong> Collagna bore uniform<br />

conc<strong>en</strong>tration values. A second association is<br />

repres<strong>en</strong>ted by alum<strong>in</strong>ium and copper and it is the<br />

area of Reggio Emilia which provided the highest<br />

levels.<br />

The maps repres<strong>en</strong>t<strong>in</strong>g ars<strong>en</strong>ic, mercury, cadmium<br />

and lead are very differ<strong>en</strong>t both among themselves<br />

and compared to other distribution maps. They<br />

confirm that the only overlap with the soil acidity<br />

map is the mercury cont<strong>en</strong>t <strong>in</strong> <strong>mushrooms</strong>. The<br />

Spatial distribution of elem<strong>en</strong>t conc<strong>en</strong>trations<br />

shows a few types of associations. The first is<br />

repres<strong>en</strong>ted by chromium and nickel with the<br />

highest levels, 125 and 27 mg/kg, respectively,<br />

found <strong>in</strong> Montecchio; other areas display<strong>in</strong>g<br />

uniform conc<strong>en</strong>tration levels. A second association<br />

is repres<strong>en</strong>ted by copper and lead with the area of<br />

Carp<strong>in</strong>eti which registered the highest values for<br />

those <strong>elem<strong>en</strong>ts</strong>.<br />

Alum<strong>in</strong>ium, z<strong>in</strong>c and mercury partly overlap, while<br />

ars<strong>en</strong>ic and cadmium are quite differ<strong>en</strong>t both<br />

Table 6. Results of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis .<br />

Compon<strong>en</strong>t<br />

1 2 3<br />

pH_s -.042 -.060 .803<br />

As_FA .006 .093 .721<br />

Cd_FA .437 .304 .003<br />

Cr_FA .839 .004 -.037<br />

Cu_FA .897 .191 -.055<br />

Hg_FA .209 .788 .054<br />

Ni_FA .242 .629 -.350<br />

Pb_FA -.102 .692 .131<br />

Zn_FA .932 -.013 -.019<br />

betwe<strong>en</strong> themselves and with other distribution<br />

maps. The map show<strong>in</strong>g soil acidity has a<br />

resemblance to that display<strong>in</strong>g the z<strong>in</strong>c and<br />

mercury cont<strong>en</strong>t <strong>in</strong> <strong>mushrooms</strong> and also a<br />

quantitative overlap betwe<strong>en</strong> the alum<strong>in</strong>ium <strong>in</strong> the<br />

soil and the conc<strong>en</strong>trations of alum<strong>in</strong>ium <strong>in</strong><br />

<strong>mushrooms</strong> has be<strong>en</strong> observed.<br />

The maps <strong>in</strong> Figs. 43, 44 and 45 illustrate the<br />

conc<strong>en</strong>tration distribution of ars<strong>en</strong>ic, copper and<br />

mercury, the average levels of which are,<br />

respectively: 0.43, 93.7 and 2.24 mg/kg.<br />

Ars<strong>en</strong>ic: the areas of highest conc<strong>en</strong>tration were<br />

found betwe<strong>en</strong> Cas<strong>in</strong>a and Canossa, where the<br />

maximum is 9 mg/kg, while for the rest of the<br />

territory, the distribution is mostly uniform. Other<br />

authors found higher values (1.76 mg/kg) <strong>in</strong> La.<br />

laccata (Demirbaş, 2001) at the Black Sea. In<br />

samples from the various European nations and<br />

Brazil Slejkovec et al. (1977) found a value of 0.66<br />

mg/kg <strong>in</strong> La. laccata, while their highest<br />

conc<strong>en</strong>tration was found <strong>in</strong> La. fraterna, hav<strong>in</strong>g 30<br />

mg/kg. Konuk et al. (2007) reported a level of 0.44<br />

mg/kg <strong>in</strong> a sample of Ar. mellea collected <strong>in</strong><br />

Turkey.<br />

Copper: Fig. 44 shows the distribution of<br />

copper. High values are pres<strong>en</strong>t <strong>in</strong> the pla<strong>in</strong>s<br />

around the city of Reggio and area to the north of<br />

the Pedemontana road with a maximum level of<br />

319 mg/kg. In a previous study, differ<strong>en</strong>t values<br />

were reported <strong>in</strong> La. laccata; respectively 12.9 and<br />

92.5 mg/kg (Demirbaş, 2000, 2001).<br />

75


In Macedonia and the area of Epirus, Ouzoun et<br />

al. (2009) have found levels of 17.38 and 17.47<br />

mg/kg <strong>in</strong> samples of Ar.mellea and Ar. tabesc<strong>en</strong>s<br />

respectively. The same authors, Ouzoun et al<br />

(2007), found conc<strong>en</strong>trations of 16 and 4.65 mg/kg<br />

<strong>in</strong> Hy. eburneus and Hy. chrysodon. In Turkey<br />

Yamachiche et al. (2007) found 144.2 and 82.4<br />

Mercury: the Mercury map is shown <strong>in</strong> Fig. 45.<br />

The Quattro Castella site displays the highest<br />

76<br />

Fig. 43. Spatial distribution of ars<strong>en</strong>ic for the g<strong>en</strong>us Clitocybe.<br />

Fig. 44. Spatial distribution of copper for the g<strong>en</strong>us Clitocybe.<br />

mg/kg <strong>in</strong> Le. nuda and I. geotropa respectively. In<br />

an area of the Black Sea, Sesli et al (2008) found<br />

conc<strong>en</strong>trations of 32.8, 52.4 and 20.1 mg/kg <strong>in</strong> the<br />

species La. amethyst<strong>in</strong>a, Cl. gibba and Le. nuda. In<br />

France there was a conc<strong>en</strong>tration of 56.9 mg/kg <strong>in</strong><br />

samples of Cl. nebularis (Michelot et al., 1998).<br />

levels, equal to 6 mg/kg. Moderately high values<br />

were also observed on the Ap<strong>en</strong>n<strong>in</strong>e border. In


literature there are relatively few data on mercury.<br />

Demirbaş (2000, 2001), <strong>in</strong> two studies carried out<br />

east of the Black Sea, obta<strong>in</strong>ed levels which were<br />

differ<strong>en</strong>t (0.39 and 0.072 mg/kg) and much lower<br />

than those observed <strong>in</strong> Reggio Emilia, by us<strong>in</strong>g and<br />

analyz<strong>in</strong>g samples of La. laccata. Cocchi et<br />

al. (2006), <strong>in</strong> the prov<strong>in</strong>ce of Reggio Emilia have<br />

reported levels of 6.25, 0.12, 0.22, 0.77, 1.74 and<br />

1.78 mg/kg <strong>in</strong> Le. nuda, La. laccata, Hy. p<strong>en</strong>arius,<br />

Hy. russula, Ly. decastes and Ma. oreades<br />

As has already be<strong>en</strong> observed for other g<strong>en</strong>era and<br />

species of fungi, ars<strong>en</strong>ic, chromium, nickel and<br />

lead do not t<strong>en</strong>d to accumulate <strong>in</strong> carpophores. This<br />

is evid<strong>en</strong>ced by the <strong>en</strong>richm<strong>en</strong>t factors for lead and<br />

confirmed by the studies of Garcia et al. (2009). In<br />

contrast the <strong>elem<strong>en</strong>ts</strong> mercury (especially <strong>in</strong> Le.<br />

nuda) (Kalač et al., 1989b), cadmium, copper and<br />

Fig. 45. Spatial distribution of mercury for the g<strong>en</strong>us Clitocybe.<br />

Table 7. Result of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

Compon<strong>en</strong>t<br />

1 2 3<br />

pH_s -.128 -.096 .961<br />

As_FA .975 .175 -.090<br />

Cd_FA .948 .256 -.123<br />

Cr_FA .701 .304 .267<br />

Cu_FA .980 .097 -.128<br />

Hg_FA .215 .964 -.105<br />

Ni_FA .988 .040 -.132<br />

Pb_FA .911 .312 -.085<br />

Zn_FA .977 .159 -.113<br />

respectively. In Cl. nebularis there was a<br />

significantly higher conc<strong>en</strong>tration, equival<strong>en</strong>t to<br />

62.9 mg/kg (Michelot et al., 1998). In the Czech<br />

Republic, <strong>in</strong> an area adjo<strong>in</strong><strong>in</strong>g silver m<strong>in</strong>es,<br />

Svoboda et al. (2006) found levels of 12.9 and 4.2<br />

mg/kg <strong>in</strong> Ar. mellea and Le. nuda. These values are<br />

considerably higher than both the average<br />

conc<strong>en</strong>tration level and the maximum value<br />

obta<strong>in</strong>ed <strong>in</strong> the prov<strong>in</strong>ce of Reggio Emilia.<br />

z<strong>in</strong>c t<strong>en</strong>d to accumulate, but not <strong>in</strong> such a marked<br />

manner <strong>in</strong> Clitocybe carpophores, ev<strong>en</strong> though the<br />

soil is low <strong>in</strong> conc<strong>en</strong>tration levels of these. All this<br />

is confirmed for mercury by Falandysz et al.<br />

(2002).<br />

The results obta<strong>in</strong>ed from pr<strong>in</strong>cipal compon<strong>en</strong>t<br />

analysis are pres<strong>en</strong>ted <strong>in</strong> Table 7.<br />

77


The first three compon<strong>en</strong>ts describe and expla<strong>in</strong><br />

94% of the total variance. It is noted that mercury<br />

is <strong>in</strong> contrast with other <strong>elem<strong>en</strong>ts</strong> and is dissociated<br />

by the acidity of the soil. The second compon<strong>en</strong>t<br />

re<strong>in</strong>forces what has be<strong>en</strong> described, mercury be<strong>in</strong>g<br />

separated from the other <strong>elem<strong>en</strong>ts</strong>, and the third<br />

constitu<strong>en</strong>t describes the "weak" l<strong>in</strong>k betwe<strong>en</strong><br />

acidity and chrome. The rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> are<br />

not related to pH.<br />

4.3.3 G<strong>en</strong>us Amanita (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

- Order Amanitales)<br />

The chart of the conc<strong>en</strong>tration levels for ars<strong>en</strong>ic,<br />

cadmium, chromium, copper, mercury, nickel, lead<br />

and z<strong>in</strong>c, was quite uniform. The exceptions are the<br />

pairs of alum<strong>in</strong>ium and nickel and also chromium<br />

and cadmium that are qualitatively similar. As for<br />

the comparison betwe<strong>en</strong> the conc<strong>en</strong>tration<br />

distributions <strong>in</strong> the <strong>mushrooms</strong> with those of the<br />

soil, the map does not appear related to the pH<br />

distribution, while the cont<strong>en</strong>t of chromium, nickel<br />

and alum<strong>in</strong>ium <strong>in</strong> the soil displays a<br />

correspond<strong>en</strong>ce with the <strong>mushrooms</strong>.<br />

Copper: the distribution of copper is shown <strong>in</strong> Fig.<br />

47. The average level is 63.59 mg/kg. The highest<br />

values are found <strong>in</strong> the pla<strong>in</strong>s of the prov<strong>in</strong>ce while<br />

78<br />

Fig. 46. Spatial distribution of cadmium for the g<strong>en</strong>us Amanita.<br />

Cadmium: Fig 46 shows the distribution of<br />

cadmium, for which the average value is 2.5 mg/kg<br />

with a maximum of 33.4 mg/kg located <strong>in</strong> the<br />

Ap<strong>en</strong>n<strong>in</strong>es. High levels are also found <strong>in</strong> the air<br />

betwe<strong>en</strong> Vezzano and Viano. In Turkey, Tüz<strong>en</strong><br />

(2003) found a similar level <strong>in</strong> Am. solitaria, equal<br />

to 7.5 mg/kg, while <strong>in</strong> Macedonia and <strong>in</strong> the area of<br />

Epirus, Ouzoun et al. (2009) found a rather modest<br />

level of 1.3 mg/kg <strong>in</strong> Am. caesarea. Similar values<br />

were found <strong>in</strong> the Black Sea <strong>in</strong> M. muscaria, Am.<br />

rubesc<strong>en</strong>s and Am. vag<strong>in</strong>ata, with values of 1.6,<br />

0.79 and 0:56 mg/kg, respectively (Demirbaş,<br />

2001). In Turkey, Yamaç et al. (2007) measured a<br />

level of 2.46 mg/kg <strong>in</strong> Am. Caesarea, which is <strong>in</strong><br />

the middle betwe<strong>en</strong> what is stated <strong>in</strong> our<br />

<strong>in</strong>vestigation and that of the other authors cited. A<br />

significant number of samples from species <strong>in</strong> the<br />

g<strong>en</strong>us of Amanita was analysed by Michellot et al.<br />

(1998) <strong>in</strong> the Paris region. These <strong>in</strong>cluded Am.<br />

Excelsa var. excelsa, Am. gemmata, Am. muscaria,<br />

Am. ovoidea, Am. panther<strong>in</strong>a, Am. phalloides, Am.<br />

rubesc<strong>en</strong>s, Am. solitaria, Am. excelsa var. spissa<br />

and Am. vag<strong>in</strong>ata. The values obta<strong>in</strong>ed were<br />

similar to those observed by us, be<strong>in</strong>g, respectively:<br />

6; 14.9; 13.9; 2.9; 10.3; 1.5; 2.4; 2.6; 2.5 and 7.7<br />

mg/kg.<br />

other areas are very uniform and quite close to the<br />

average level. A similar value of 50.8 mg/kg was<br />

found <strong>in</strong> Turkey <strong>in</strong> Am. Caesarea (Yamachiche et


al., 2007), while Tüz<strong>en</strong> (2003) found 96.2 mg/kg <strong>in</strong><br />

Am. solitaria. Demirbaş (2001) recorded slightly<br />

erratic values of 23.5, 51.2 and 5.1 mg/kg <strong>in</strong><br />

Am. muscaria, Am. rubesc<strong>en</strong>s and Am. vag<strong>in</strong>ata <strong>in</strong><br />

the Black Sea area. In Macedonia and Epirus,<br />

Ouzoun et al.(2009) recorded 19.3 mg/kg <strong>in</strong><br />

samples of Am.Caesarea. Also regard<strong>in</strong>g copper,<br />

Michellot et al. (1998) observed similar levels <strong>in</strong><br />

Mercury: The highest values of mercury were<br />

found <strong>in</strong> the area of Casalgrande (24.3 mg/kg be<strong>in</strong>g<br />

the maximum level) (Fig. 48).<br />

The average value of 1.19 mg/kg is repres<strong>en</strong>tative<br />

of a substantial part of the Reggio Emilia area. In<br />

the Czech Republic, <strong>in</strong> an area close to silver<br />

m<strong>in</strong>es, Svoboda et al. (2006) found 1.55 mg/kg <strong>in</strong><br />

the Am. rubesc<strong>en</strong>s. Values one order of magnitude<br />

lower were found <strong>in</strong> the Black Sea <strong>in</strong> the Am.<br />

muscaria (0.18 mg/kg), Am. rubesc<strong>en</strong>s (0.23<br />

mg/kg) and Am. vag<strong>in</strong>ata (0.32 mg/kg) (Demirbaş,<br />

2001). In Poland, Falandysz et al. (2002) found<br />

Fig. 47. Spatial distribution of copper for the g<strong>en</strong>us Amanita.<br />

Am. excelsa var. excelsa (75.6 mg/kg), Am.<br />

gemmata (44.4 mg/kg), Am. muscaria (28.4<br />

mg/kg), Am. ovoidea (21.7 mg/kg), Am. panther<strong>in</strong>a<br />

(38.5 mg/kg), Am. phalloides (29.7 mg/kg), Am.<br />

rubesc<strong>en</strong>s (41.9 mg/kg), Am. solitaria (24 mg/kg),<br />

Am. excelsa var. spissa (29.2 mg/kg) and Am.<br />

vag<strong>in</strong>ata (65.9 mg/kg).<br />

levels betwe<strong>en</strong> 0.07 and 1.5 mg/kg <strong>in</strong> the caps and<br />

betwe<strong>en</strong> 0.021 and 1.3 mg/kg <strong>in</strong> the stalks of Am.<br />

muscaria. The mercury levels found by Michellot<br />

et al. (1998) appear excessively high <strong>in</strong>: Am.<br />

excelsa var. excelsa (61.3 mg/kg), Am. Gemmata<br />

(37.4 mg/kg), Am. muscaria (61.3 mg/kg), Am.<br />

ovoidea (61.4 mg/kg), Am. panther<strong>in</strong>a (64.9<br />

mg/kg), Am. phalloides (40.3 mg/kg), Am.<br />

rubesc<strong>en</strong>s (57 mg/kg), Am. solitaria (48.8 mg/kg),<br />

Am. excelsa var. spissa (58.4 mg/kg) and Am.<br />

vag<strong>in</strong>ata (54.3 mg/kg).<br />

79


4.3.4 Amanita muscaria (L.) Lam.<br />

(Subdivision Basidiomycot<strong>in</strong>a - Subclass<br />

Agaricomycetideae - Order Amanitales -<br />

G<strong>en</strong>us Amanita)<br />

For Am. muscaria, a medium-high to high<br />

frequ<strong>en</strong>cy species, distribution maps of vanadium<br />

and zirconium (Figs. 49 and 50) have be<strong>en</strong> drawn<br />

because the conc<strong>en</strong>trations of these <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> this<br />

species are by all means exceptional. The areas<br />

80<br />

Fig. 48. Spatial distribution of mercury for the g<strong>en</strong>us Amanita.<br />

Fig. 49. Spatial distribution of vanadium for Am. muscaria.<br />

with the greatest conc<strong>en</strong>trations are located <strong>in</strong> the<br />

Ap<strong>en</strong>n<strong>in</strong>es, where vanadium and zirconium occur<br />

<strong>in</strong> their highest levels of 195 and 19.4 mg/kg<br />

respectively. From the conc<strong>en</strong>tration levels of the<br />

two <strong>elem<strong>en</strong>ts</strong> and the soil pH levels, no direct<br />

relationship is evid<strong>en</strong>t, as was the case with<br />

samples of Am. muscaria. The two <strong>elem<strong>en</strong>ts</strong> are<br />

bioaccumulated regardless of the conc<strong>en</strong>tration<br />

pres<strong>en</strong>t <strong>in</strong> soils and their acidity.


It has be<strong>en</strong> noted that ars<strong>en</strong>ic, chromium, nickel<br />

and lead do not t<strong>en</strong>d to accumulate <strong>in</strong> the g<strong>en</strong>us<br />

Amanita, ev<strong>en</strong> if the soil is rich <strong>in</strong> these <strong>elem<strong>en</strong>ts</strong><br />

(Kalac and Svobova, 2000, García et al., 2009).<br />

The <strong>elem<strong>en</strong>ts</strong> copper and z<strong>in</strong>c t<strong>en</strong>d to accumulate<br />

but to a lesser ext<strong>en</strong>t, while cadmium and mercury<br />

accumulate abundantly (Sova et al., 1991; Vetter,<br />

Fig. 50. Spatial distribution of zirconium for Am. muscaria.<br />

Table 8. Results of pr<strong>in</strong>cipal compon<strong>en</strong>ts analysis.<br />

Compon<strong>en</strong>t<br />

1 2 3 4 5<br />

Al_a -.096 .017 .832 -.035 .054<br />

As_a -.038 .139 -.221 -.104 .099<br />

Cd_a -.084 .611 -.138 -.004 .077<br />

Cr_a .091 -.026 .721 -.058 -.054<br />

Cu_a -.065 .025 .069 .802 .137<br />

Hg_a .129 -.043 .057 .612 .065<br />

Ni_a .006 -.104 .884 -.031 .009<br />

Pb_a -.091 .186 .272 .020 -.052<br />

Zn_a -.104 .432 -.048 .664 .026<br />

Al_s .009 .776 .040 -.093 .457<br />

As_s .293 .627 .011 .171 -.049<br />

Cd_s .730 -.083 -.056 .106 .010<br />

Cr_s .872 .227 .027 .075 .086<br />

Cu_s .026 .056 -.056 .259 .917<br />

Hg_s .086 -.599 -.032 .077 -.098<br />

Ni_s .913 -.163 .004 -.031 -.003<br />

Pb_s .211 -.263 -.181 .613 -.036<br />

Zn_s .070 .277 -.088 .002 .913<br />

1994). This has be<strong>en</strong> confirmed by Falandysz et al.<br />

(2002) for the elem<strong>en</strong>t mercury. Kalač and<br />

Svobova (2000) exam<strong>in</strong>ed <strong>en</strong>richm<strong>en</strong>t factors equal<br />

to 50-300 and 30-500 for cadmium and mercury.<br />

The results obta<strong>in</strong>ed from pr<strong>in</strong>cipal compon<strong>en</strong>ts<br />

analysis are pres<strong>en</strong>ted <strong>in</strong> Table 8. The first five<br />

compon<strong>en</strong>ts expla<strong>in</strong>ed 59% of the total variance.<br />

81


In compon<strong>en</strong>t one, nickel and chromium <strong>in</strong><br />

particular and also cadmium are l<strong>in</strong>ked together<br />

and fall marg<strong>in</strong>ally below the other <strong>elem<strong>en</strong>ts</strong> <strong>in</strong><br />

soils and fungi. In compon<strong>en</strong>t two, cadmium and<br />

z<strong>in</strong>c t<strong>en</strong>d to <strong>in</strong>crease <strong>in</strong> <strong>mushrooms</strong> with <strong>in</strong>creas<strong>in</strong>g<br />

alum<strong>in</strong>ium and ars<strong>en</strong>ic <strong>in</strong> soils, while the mercury<br />

<strong>in</strong> the soil decreases. The third compon<strong>en</strong>t<br />

describes the l<strong>in</strong>k betwe<strong>en</strong> alum<strong>in</strong>ium, chromium<br />

and nickel <strong>in</strong> <strong>mushrooms</strong> of terrig<strong>en</strong>ous orig<strong>in</strong>, <strong>in</strong><br />

contrast aga<strong>in</strong> with fall<strong>in</strong>g ars<strong>en</strong>ic levels <strong>in</strong><br />

82<br />

<strong>mushrooms</strong>. The fourth compon<strong>en</strong>t shows an<br />

<strong>in</strong>crease of copper and mercury <strong>in</strong> <strong>mushrooms</strong> with<br />

lead, while the rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> do not change.<br />

The fifth compon<strong>en</strong>t concerns alum<strong>in</strong>ium, copper<br />

and z<strong>in</strong>c <strong>in</strong> soils.<br />

As for the <strong>en</strong>richm<strong>en</strong>t factor, the results obta<strong>in</strong>ed<br />

from the pr<strong>in</strong>cipal compon<strong>en</strong>ts analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 9. These are related to<br />

<strong>en</strong>richm<strong>en</strong>t factors, and the first three compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 93% of the total variance.<br />

Table 9. Results of pr<strong>in</strong>cipal compon<strong>en</strong>ts analysis <strong>in</strong> Amanita muscaria (L.) Lam..<br />

Base levels <strong>in</strong> soils are directly correlated with the<br />

bioaccumulation of almost all <strong>elem<strong>en</strong>ts</strong> except for<br />

copper and lead, while nickel is predom<strong>in</strong>antly<br />

bioaccumulated <strong>in</strong> acidic soils. Compon<strong>en</strong>t two<br />

expla<strong>in</strong>s how acidic soils are <strong>in</strong> particular<br />

opposition to vanadium, cadmium, copper, nickel<br />

and z<strong>in</strong>c. The third compon<strong>en</strong>t describes a strong<br />

relationship betwe<strong>en</strong> pH and lead, an <strong>in</strong>crease <strong>in</strong><br />

one also <strong>in</strong>creases the other and vice versa.<br />

4.3.5 G<strong>en</strong>us Russula (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

- Order Russulales)<br />

An overview and comparison of the maps show<strong>in</strong>g<br />

ars<strong>en</strong>ic, cadmium, chromium, copper, mercury,<br />

nickel, lead and z<strong>in</strong>c reveal a rather heterog<strong>en</strong>eous<br />

distribution of conc<strong>en</strong>trations.<br />

Ars<strong>en</strong>ic: for this elem<strong>en</strong>t (Fig. 51), the distribution<br />

is constant over the <strong>en</strong>tire <strong>in</strong>vestigated area. The<br />

1<br />

Compon<strong>en</strong>t<br />

2 3<br />

As_FA .996 -.013 -.050<br />

Cd_FA .867 .451 -.044<br />

Cr_FA .926 .154 .170<br />

Cu_FA .112 .973 -.113<br />

Hg_FA .941 .063 .304<br />

Ni_FA -.265 .922 .018<br />

Pb_FA .070 -.088 .954<br />

Zn_FA .279 .923 -.187<br />

V_FA .587 .759 -.126<br />

Zr_FA .984 -.123 .110<br />

pH_s .416 -.460 .549<br />

higher values of 7 and 5 mg/kg were found near<br />

Ligonchio and Viano. The average level is 0.2<br />

mg/kg.<br />

Higher conc<strong>en</strong>tration values <strong>in</strong> four species of<br />

Russula were found by Demirbaş (2001) to the east<br />

of the Black Sea. In c<strong>en</strong>tral F<strong>in</strong>land conc<strong>en</strong>trations<br />

rang<strong>in</strong>g from 0.1 to 0.5 mg/kg were found<br />

(Nikkar<strong>in</strong><strong>en</strong> and Mertan<strong>en</strong>, 2004).<br />

Lead and Z<strong>in</strong>c: Figs. 52 and 53 illustrate the<br />

spatial distribution of lead and z<strong>in</strong>c conc<strong>en</strong>trations<br />

that appear to be qualitatively similar, except for a<br />

small area repres<strong>en</strong>ted by the area of the city of<br />

Reggio Emilia, where the levels of lead appear to<br />

be significantly higher. These levels are due to<br />

motor vehicle fuel conta<strong>in</strong><strong>in</strong>g tetraethyl lead as an<br />

antiknock additive (C<strong>en</strong>ci et al., 2008). The<br />

average level is 1.8 mg/kg, <strong>in</strong> agreem<strong>en</strong>t with that<br />

found <strong>in</strong> F<strong>in</strong>land (1.4 ÷ 2 mg/kg; Demirbaş, 2001)<br />

and Turkey (2.3 mg/kg; Tüz<strong>en</strong>, 2003).


Still focus<strong>in</strong>g on Turkey, the lead conc<strong>en</strong>tration <strong>in</strong><br />

Ru. delica was 3.89 mg/kg (Demirbaş, 2000), while<br />

Konuk et al. (2007) found the rather small level of<br />

0.03 mg/kg. This value, judg<strong>in</strong>g by observations of<br />

other <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> differ<strong>en</strong>t fungi, seems somewhat<br />

underestimated. For z<strong>in</strong>c the average conc<strong>en</strong>tration<br />

Fig. 51. Spatial distribution of ars<strong>en</strong>ic for the g<strong>en</strong>us Russula.<br />

Fig. 52. Spatial distribution of lead for the g<strong>en</strong>us Russula.<br />

of 91mg/kg was higher than average levels, that<br />

ranged betwe<strong>en</strong> 19 and 32 mg/kg (Demirbaş,<br />

2001), whereas the value of 78 mg/kg repored from<br />

Turkey (Tüz<strong>en</strong>, 2003) looks quite similar to the one<br />

observed <strong>in</strong> our study.<br />

83


The values of <strong>en</strong>richm<strong>en</strong>t factors showed that<br />

ars<strong>en</strong>ic, chromium, nickel and lead do not t<strong>en</strong>d to<br />

accumulate <strong>in</strong> <strong>mushrooms</strong> ev<strong>en</strong> if the soil has high<br />

conc<strong>en</strong>trations of these <strong>elem<strong>en</strong>ts</strong>. This ph<strong>en</strong>om<strong>en</strong>on<br />

has be<strong>en</strong> further confirmed by Garcia et al. (2009).<br />

By contrast, cadmium, copper, z<strong>in</strong>c and mercury<br />

t<strong>en</strong>d to accumulate <strong>in</strong> the fruit<strong>in</strong>g bodies of fungi<br />

ev<strong>en</strong> wh<strong>en</strong> these <strong>elem<strong>en</strong>ts</strong> are at low conc<strong>en</strong>trations<br />

84<br />

Fig. 53. Spatial distribution of z<strong>in</strong>c for the g<strong>en</strong>us Russula.<br />

Table 10. Results of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

Compon<strong>en</strong>ts<br />

1 2 3 4 5<br />

pH_s .325 .123 .282 -.662 -.403<br />

Al_r -.083 .850 .022 .059 .136<br />

As_r .075 .139 -.096 -.144 .365<br />

Cd_r -.011 -.162 -.332 -.127 .018<br />

Cr_r .058 .904 .101 .017 .101<br />

Cu_r .110 -.204 -.472 .165 .129<br />

Hg_r .188 .090 -.148 -.031 -.258<br />

Ni_r -.030 .767 .073 -.143 -.235<br />

Pb_r .203 .383 -.358 -.005 .476<br />

Zn_r .239 .181 -.071 .046 .289<br />

Al_s .065 .146 -.004 .719 -.491<br />

As_s .196 -.068 .114 .893 -.083<br />

Cd_s .196 -.211 .574 .051 .471<br />

Cr_s .267 -.033 .851 .064 -.183<br />

Cu_s .939 -.018 .047 -.072 .116<br />

Hg_s .027 -.080 .055 -.043 .681<br />

Ni_s .094 -.061 .884 -.102 .166<br />

Pb_s .834 -.086 .213 .116 -.060<br />

Zn_s .910 .009 .060 .067 .124<br />

<strong>in</strong> the soil (Kalac and Svoboda, 2000). This has<br />

be<strong>en</strong> confirmed for mercury <strong>in</strong> Ru. emetica<br />

(Falandysz et al., 2002) and for cadmium <strong>in</strong> Ru.<br />

cyanoxantha (Vetter, 1994).<br />

The results obta<strong>in</strong>ed from pr<strong>in</strong>cipal compon<strong>en</strong>t<br />

analysis are pres<strong>en</strong>ted <strong>in</strong> Table 10. The first five<br />

compon<strong>en</strong>ts describe and expla<strong>in</strong> 60% of the total<br />

variance.


In compon<strong>en</strong>t 1, only copper, lead and z<strong>in</strong>c are<br />

associated with soil pH. With <strong>in</strong>creas<strong>in</strong>g pH the<br />

three <strong>elem<strong>en</strong>ts</strong> <strong>in</strong>crease, therefore lower soil acidity<br />

is directly related to an <strong>in</strong>crease <strong>in</strong> the<br />

conc<strong>en</strong>tration levels of those three <strong>elem<strong>en</strong>ts</strong>. The<br />

association of chromium and nickel <strong>in</strong> the g<strong>en</strong>us<br />

Russula is affected by alum<strong>in</strong>ium. The same<br />

association, along with cadmium, can be found <strong>in</strong><br />

soil and it repres<strong>en</strong>ts a countertr<strong>en</strong>d to copper and<br />

lead <strong>in</strong> <strong>mushrooms</strong>. Increases <strong>in</strong> the alum<strong>in</strong>ium<br />

conc<strong>en</strong>tration <strong>in</strong> soil are associated with <strong>in</strong>creases<br />

<strong>in</strong> ars<strong>en</strong>ic and run counter to pH levels. In the fifth<br />

compon<strong>en</strong>t we can see a diverg<strong>en</strong>ce betwe<strong>en</strong> the<br />

pH level and alum<strong>in</strong>ium aga<strong>in</strong>st ars<strong>en</strong>ic and lead <strong>in</strong><br />

soil and cadmium and mercury <strong>in</strong> <strong>mushrooms</strong>. For<br />

these last two items the <strong>in</strong>crease <strong>in</strong> conc<strong>en</strong>tration<br />

<strong>in</strong>side carpophores is <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t of conc<strong>en</strong>tration<br />

levels of the substrate (Kalač et al., 1989b; Jorhem<br />

and Sundström, 1995; Falandysz et al., 2002).<br />

4.3.6 G<strong>en</strong>us Agaricus (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

- Order Agaricales)<br />

Spatial distribution of the elem<strong>en</strong>t conc<strong>en</strong>trations<br />

highlights a few types of "associations". The first is<br />

repres<strong>en</strong>ted by chromium and nickel with the<br />

highest values, 125 and 27 mg/kg respectively.<br />

They are characteristic of the area of Montecchio,<br />

while the rema<strong>in</strong><strong>in</strong>g area displays ma<strong>in</strong>ly uniform<br />

Fig. 54. Spatial distribution of cadmium for the g<strong>en</strong>us Agaricus.<br />

conc<strong>en</strong>tration values. A second association is<br />

repres<strong>en</strong>ted by copper and lead: we registered the<br />

maximum levels <strong>in</strong> the area of Carp<strong>in</strong>eti. The levels<br />

of alum<strong>in</strong>ium, z<strong>in</strong>c and mercury partly overlap,<br />

while ars<strong>en</strong>ic and cadmium are quite differ<strong>en</strong>t both<br />

from each other and from other conc<strong>en</strong>tration<br />

distribution maps. The map show<strong>in</strong>g soil acidity<br />

has a resemblance to that display<strong>in</strong>g z<strong>in</strong>c and<br />

mercury <strong>in</strong> <strong>mushrooms</strong>: one ev<strong>en</strong> notes a<br />

quantitative overlap betwe<strong>en</strong> the alum<strong>in</strong>ium <strong>in</strong> the<br />

soil; appar<strong>en</strong>tly, alum<strong>in</strong>ium accumulates <strong>in</strong> fungi.<br />

Maps 54, 55 and 56 illustrate the conc<strong>en</strong>tration<br />

distribution of cadmium, mercury and lead. The<br />

average levels are respectively 1.58, 2.29 and 1.09<br />

mg/kg.<br />

Cadmium: the areas of highest conc<strong>en</strong>tration were<br />

found near Carp<strong>in</strong>eti, Vezzano and Reggio Emilia.<br />

Demirbaş (2001) reported similar values, of 3.84<br />

and 1.04 mg/kg <strong>in</strong> Ag. bisporus and Ag. Silvicola<br />

near the Black Sea. The same author <strong>in</strong> Turkey<br />

(Demirbaş, 2000) reported 2.17 mg/kg by<br />

analys<strong>in</strong>g the species Ag. bitorquis. In Greece<br />

Ouzoun et al. (2007) found 0.15 mg/kg of cadmium<br />

<strong>in</strong> Ag. cupreobruneus.<br />

M<strong>en</strong>dil et al. (2004) reported a value of 0.1 mg/kg<br />

<strong>in</strong> Ag. bisporus <strong>in</strong> an area with high vehicular<br />

traffic <strong>in</strong> Turkey.<br />

85


Mercury: the distribution of mercury<br />

conc<strong>en</strong>trations over the territory was not uniform<br />

(Fig. 55). The highest values were se<strong>en</strong> <strong>in</strong> the area<br />

of Carp<strong>in</strong>eti. Also, those areas compris<strong>in</strong>g the<br />

towns of Castelnovo Monti, Vetto and Ramiseto<br />

have comparatively high values.<br />

<strong>in</strong> the Black Sea Demirbaş (2001) recorded lower<br />

levels, 0.6 and 0.15 mg/kg, <strong>in</strong> Ag. bisporus and Ag.<br />

Lead: Fig. 56 shows that the highest levels are<br />

those <strong>in</strong> the areas of Carp<strong>in</strong>eti and the town of<br />

86<br />

Fig. 55. Spatial distribution of mercury for the g<strong>en</strong>us Agaricus.<br />

Fig. 56. Spatial distribution of lead for the g<strong>en</strong>us Agaricus.<br />

silvicola respectively. The same author (Demirbaş,<br />

2000) reported 0.14 mg/kg <strong>in</strong> Ag. bitorquis <strong>in</strong><br />

Turkey. These levels are significantly lower than<br />

those observed <strong>in</strong> this study. In the Czech Republic,<br />

<strong>in</strong> an area close to silver m<strong>in</strong>es the average<br />

conc<strong>en</strong>tration levels reported for Ch. rhacodes<br />

were 2.59 mg/kg (Svoboda et al., 2006).<br />

Reggio Emilia. The latter probably due to its high<br />

volume of vehicular traffic.


Differ<strong>en</strong>t levels were reported by Demirbaş (2000,<br />

2001): <strong>in</strong> samples of Ag. bitorquis, Ag. bisporus<br />

and Ag. Silvicola they found 1.34, 2.41 and 0.92<br />

mg/kg respectively. M<strong>en</strong>dil et al. (2004), reported a<br />

level of 6.9 mg/kg <strong>in</strong> Ag. bisporus <strong>in</strong> an area with<br />

high traffic levels <strong>in</strong> Turkey. Campos et al. (2009)<br />

found a 2.53 mg/kg <strong>in</strong> an Ag. campestris sample <strong>in</strong><br />

c<strong>en</strong>tral Spa<strong>in</strong>. García et al. (2009), <strong>in</strong> the prov<strong>in</strong>ce<br />

of Lugo (Spa<strong>in</strong>) analyzed Ag. bisporus, Ag.<br />

campestris, Ag. ur<strong>in</strong>asc<strong>en</strong>s and Ag. silvicola, and<br />

found conc<strong>en</strong>trations <strong>in</strong> the mushroom caps of 0.35,<br />

3, 1.4 and 1.4 mg/kg. The same authors evaluated<br />

<strong>en</strong>richm<strong>en</strong>t factors, conclud<strong>in</strong>g that lead does not<br />

t<strong>en</strong>d to accumulate <strong>in</strong> fungi, ev<strong>en</strong> if it is pres<strong>en</strong>t <strong>in</strong><br />

high conc<strong>en</strong>trations <strong>in</strong> the soil.<br />

Ars<strong>en</strong>ic, chromium, nickel and lead do not t<strong>en</strong>d to<br />

accumulate <strong>in</strong> fungi. This aspect has be<strong>en</strong> shown by<br />

<strong>en</strong>richm<strong>en</strong>t factors, and conv<strong>in</strong>c<strong>in</strong>gly confirmed for<br />

lead by García et al. (2009). In contrast the<br />

<strong>elem<strong>en</strong>ts</strong> mercury (<strong>in</strong> particular), cadmium, copper,<br />

Table 11. Results of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

Compon<strong>en</strong>ts<br />

1 2 3 4<br />

pH_s .486 .462 .621 .086<br />

Al_s .203 -.562 .284 .727<br />

As_s .551 -.592 .187 .538<br />

Cd_s .961 -.180 .078 -.062<br />

Cr_s .898 .056 .286 .274<br />

Cu_s .944 .242 .186 -.028<br />

Hg_s .102 .684 -.102 -.266<br />

Ni_s .979 .120 .144 -.032<br />

Pb_s .918 -.019 .256 .269<br />

Zn_s .944 -.264 .123 .083<br />

AL_a .101 -.756 .305 -.074<br />

As_a .014 -.440 .159 -.755<br />

Cd_a -.003 .835 .253 .055<br />

Cr_a .420 -.219 .810 .017<br />

Cu_a -.190 .710 -.133 -.017<br />

Hg_a -.495 .359 -.068 -.486<br />

Ni_a .301 .214 .828 -.107<br />

Pb_a .177 .811 .186 .032<br />

Zn_a .002 .256 -.838 -.144<br />

and z<strong>in</strong>c t<strong>en</strong>d to accumulate <strong>in</strong> the g<strong>en</strong>us Agaricus,<br />

ev<strong>en</strong> where the soil has low conc<strong>en</strong>trations,<br />

however this accumulation is not particularly strong<br />

or marked. This was confirmed for the elem<strong>en</strong>t<br />

mercury by Falandysz et al. (2002).<br />

The results obta<strong>in</strong>ed from pr<strong>in</strong>cipal compon<strong>en</strong>t<br />

analysis are pres<strong>en</strong>ted <strong>in</strong> Table 11. The first four<br />

compon<strong>en</strong>ts describe and expla<strong>in</strong> 75% of the total<br />

variance.<br />

The first compon<strong>en</strong>t shows that the mercury <strong>in</strong><br />

<strong>mushrooms</strong> goes aga<strong>in</strong>st the majority of <strong>elem<strong>en</strong>ts</strong><br />

<strong>in</strong> the soil and is not affected by the mercury<br />

cont<strong>en</strong>t of the soil itself. The second compon<strong>en</strong>t<br />

supports this idea and l<strong>in</strong>ks pH levels to cadmium,<br />

lead and copper <strong>in</strong> <strong>mushrooms</strong> <strong>in</strong> contrast to<br />

alum<strong>in</strong>ium and ars<strong>en</strong>ic <strong>in</strong> the soil. The third<br />

compon<strong>en</strong>t describes the l<strong>in</strong>k betwe<strong>en</strong> nickel and<br />

chromium <strong>in</strong> fungi with the soil pH level. The<br />

fourth compon<strong>en</strong>t expla<strong>in</strong>s how the conc<strong>en</strong>tration<br />

of ars<strong>en</strong>ic <strong>in</strong> <strong>mushrooms</strong> is <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t and<br />

detached from soil.<br />

87


4.3.7 Section Bitorques (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

- Order Agaricales – G<strong>en</strong>us<br />

Agaricus – Subg<strong>en</strong>us Agaricus)<br />

Only one pattern adequately summarises the spatial<br />

distribution of the conc<strong>en</strong>tration levels of ars<strong>en</strong>ic,<br />

chromium, mercury and nickel. For ars<strong>en</strong>ic and<br />

other more-strongly “associated” <strong>elem<strong>en</strong>ts</strong>, the<br />

areas of highest conc<strong>en</strong>tration are betwe<strong>en</strong> Canossa<br />

and the northern border of the Ap<strong>en</strong>n<strong>in</strong>es, for<br />

chromium and mercury we can also <strong>in</strong>clude the<br />

area of Reggio Emilia and Castellarano. As regards<br />

the other <strong>elem<strong>en</strong>ts</strong>, alum<strong>in</strong>ium reaches its highest<br />

levels (2,771 mg/kg) <strong>in</strong> the Ap<strong>en</strong>n<strong>in</strong>e zone of<br />

Ramiseto; cadmium (9.2 mg/kg) <strong>in</strong> the area of Villa<br />

M<strong>in</strong>ozzo, copper (812 mg/kg) <strong>in</strong> Casalgrande and<br />

Castellarano, lead (29.5 mg/kg) <strong>in</strong> certa<strong>in</strong> areas<br />

88<br />

near the city of Reggio Emilia and z<strong>in</strong>c (273<br />

mg/kg) <strong>in</strong> Montecchio.<br />

Overlap with the values <strong>in</strong> soils is possible with<br />

nickel and to a lesser ext<strong>en</strong>t for chromium and lead.<br />

The rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> and pH levels have<br />

appar<strong>en</strong>tly no direct relationship to the<br />

conc<strong>en</strong>tration levels <strong>in</strong> <strong>mushrooms</strong>.<br />

Ars<strong>en</strong>ic: the distribution of the conc<strong>en</strong>tration levels<br />

of ars<strong>en</strong>ic is shown <strong>in</strong> Fig. 57. An average level of<br />

0.3 mg/kg was found over most of the territory.<br />

The maximum levels were found <strong>in</strong> a vast area<br />

rang<strong>in</strong>g from Canossa to Ligonchio. Slejkovec et<br />

al. (1977), analysed doz<strong>en</strong>s of mushroom samples<br />

from European countries and Brazil and found a<br />

level of 1 mg/kg <strong>in</strong> the species Ag. bisporus, which<br />

is three times higher than that we found. Always <strong>in</strong><br />

the Black Sea, Demirbaş (2001) reported a<br />

conc<strong>en</strong>tration level of 0.76 mg/kg <strong>in</strong> Ag. bisporus.<br />

Fig. 57. Spatial distribution of ars<strong>en</strong>ic for the section Bitorques of the g<strong>en</strong>us Agaricus.<br />

Cadmium: Fig 58 shows the distribution of<br />

cadmium. The highest levels were recorded <strong>in</strong> the<br />

Ap<strong>en</strong>n<strong>in</strong>e area and the whole southern zone that<br />

runs from Casalgrande to Villa M<strong>in</strong>ozzo. The<br />

average level, equal to 1.99 mg/kg, is characteristic<br />

of a good part of the territory. Values higher than<br />

those we <strong>en</strong>countered were reported by Demirbaş<br />

(2000, 2001) to the east of the Black Sea and <strong>in</strong><br />

Turkey respectively <strong>in</strong> Ag. bisporus (3.48 mg/kg)<br />

and Ag. bitorquis (2.17 mg/kg). M<strong>en</strong>dil et al.<br />

(2004) <strong>in</strong> an area of high traffic <strong>in</strong> Turkey reported<br />

an extremely low level of 0.1 mg/kg <strong>in</strong> the species<br />

Ag. bisporus, a fact not easily expla<strong>in</strong>ed, because<br />

from the <strong>en</strong>vironm<strong>en</strong>tal context <strong>in</strong> which it was<br />

found one would expect far higher conc<strong>en</strong>tration<br />

levels.<br />

Lead: lead is shown <strong>in</strong> Fig. 59. The average level<br />

of 3.94 mg/kg was found <strong>in</strong> almost every part of<br />

the territory <strong>in</strong>vestigated, the highest values for this<br />

species were <strong>in</strong> the vic<strong>in</strong>ity of the city of Reggio<br />

Emilia. M<strong>en</strong>dil et al. (2004) reported a level of 6.9<br />

mg/kg <strong>in</strong> Ag. bisporus <strong>in</strong> an area with high<br />

vehicular traffic.


Fig. 58. Spatial distribution of cadmium for the section Bitorques of the g<strong>en</strong>us Agaricus.<br />

Demirbaş (2000, 2001) found a level slightly below<br />

the average level of 2.41 mg/kg <strong>in</strong> Ag. bisporus<br />

east of the Black Sea, while <strong>in</strong> Turkey on Ag.<br />

bitorquis the conc<strong>en</strong>trations were significantly<br />

lower (1.34 mg/kg). García et al. (2009), <strong>in</strong> the<br />

prov<strong>in</strong>ce of Lugo (Spa<strong>in</strong>), analysed Ag. bisporus<br />

and observed levels of 0.35 mg/kg <strong>in</strong> the caps and<br />

0.54 mg/kg <strong>in</strong> the stems which repres<strong>en</strong>t fairly low<br />

conc<strong>en</strong>tration levels.<br />

In the Paris region, Michellot et al. (1998) observed<br />

31 mg/kg <strong>in</strong> Ag. maleol<strong>en</strong>s and 32 mg/kg <strong>in</strong> Ag.<br />

silvaticus.<br />

Fig. 59. Spatial distribution of lead for the section Bitorques of the g<strong>en</strong>us Agaricus.<br />

Ars<strong>en</strong>ic, chromium, nickel and lead do not t<strong>en</strong>d to<br />

accumulate <strong>in</strong> the fruit<strong>in</strong>g bodies, while mercury<br />

(Vetter, 1994), cadmium, copper, and z<strong>in</strong>c, <strong>in</strong><br />

desc<strong>en</strong>d<strong>in</strong>g order t<strong>en</strong>d to accumulate <strong>in</strong> the fruit<strong>in</strong>g<br />

bodies of section Bitorques, but not <strong>in</strong> a<br />

particularly marked manner.<br />

89


The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 12. The first four compon<strong>en</strong>ts<br />

Compon<strong>en</strong>t one describes how a great deal of the<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> soils are themselves l<strong>in</strong>ked and pres<strong>en</strong>t<br />

a countertr<strong>en</strong>d to ars<strong>en</strong>ic and, to a lesser ext<strong>en</strong>t with<br />

cadmium, <strong>in</strong> <strong>mushrooms</strong>. Compon<strong>en</strong>t two <strong>in</strong><br />

particular describes the conflict that exists betwe<strong>en</strong><br />

the conc<strong>en</strong>trations of mercury, z<strong>in</strong>c, cadmium and<br />

copper <strong>in</strong> soils <strong>in</strong> relation to those found <strong>in</strong> fungi. It<br />

also describes the lack of any l<strong>in</strong>k betwe<strong>en</strong><br />

chromium, nickel, and to a lesser ext<strong>en</strong>t for ars<strong>en</strong>ic<br />

and lead <strong>in</strong> <strong>mushrooms</strong> with the elem<strong>en</strong>tal cont<strong>en</strong>ts<br />

of the soil. Compon<strong>en</strong>t three groups several<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> soil which have tr<strong>en</strong>ds contrary to<br />

mercury, while the fourth constitu<strong>en</strong>t expla<strong>in</strong>s how<br />

cadmium and z<strong>in</strong>c <strong>in</strong> fungi are not related to the<br />

conc<strong>en</strong>tration levels <strong>in</strong> the soil for the same<br />

<strong>elem<strong>en</strong>ts</strong> and are both opposed to ars<strong>en</strong>ic <strong>in</strong> soil.<br />

4.3.8 Section Arv<strong>en</strong>ses (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

- Order Agaricales – G<strong>en</strong>us<br />

Agaricus - Subg<strong>en</strong>us Flavoagaricus)<br />

Detailed observation rules out significant<br />

similarities betwe<strong>en</strong> the conc<strong>en</strong>tration distributions<br />

90<br />

Table 12. Results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

Compon<strong>en</strong>ts<br />

1 2 3 4<br />

Al_b -.013 .667 -.165 .210<br />

As_b -.425 .375 .051 -.369<br />

Cd_b -.125 -.108 -.027 .825<br />

Cr_b .002 .939 .069 -.012<br />

Cu_b .037 .197 .101 .812<br />

Hg_b .470 .607 -.071 .035<br />

Ni_b .013 .858 .138 -.191<br />

Pb_b .516 .195 .353 .080<br />

Zn_b .370 .522 .202 .395<br />

Al_s .315 -.007 .761 .215<br />

As_s .234 .220 .856 .041<br />

Cd_s .849 .202 .033 .113<br />

Cr_s .728 .015 .525 -.192<br />

Cu_s .050 -.232 .568 -.084<br />

Hg_s .464 -.417 -.650 -.111<br />

Ni_s .709 .040 .529 -.208<br />

Pb_s .930 .030 -.034 -.061<br />

Zn_s .702 -.164 .431 .047<br />

describe and expla<strong>in</strong> 70% of the total variance.<br />

of the <strong>elem<strong>en</strong>ts</strong> <strong>in</strong>vestigated. A k<strong>in</strong>d of association<br />

can only be se<strong>en</strong> for alum<strong>in</strong>ium and lead. The<br />

rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> g<strong>en</strong>erally show far from<br />

uniform distributions. For cadmium the highest<br />

levels (390 mg/kg) were found betwe<strong>en</strong> Ligonchio<br />

and Collagna, while <strong>in</strong> two areas (Casalgrande and<br />

Ligonchio-Collagna) the highest conc<strong>en</strong>tration<br />

level (19.2 mg/kg) was recorded for mercury.. For<br />

chromium, the distribution was fairly uniform<br />

throughout the area: the highest levels (10.9 mg/kg)<br />

were se<strong>en</strong> <strong>in</strong> the c<strong>en</strong>tral Ap<strong>en</strong>n<strong>in</strong>es. The maximum<br />

conc<strong>en</strong>tration level for copper (1.41 mg/kg), was<br />

recorded <strong>in</strong> the city of Reggio Emilia, where<br />

anthropog<strong>en</strong>ic activity is of considerable<br />

importance, and to a lesser ext<strong>en</strong>t, on the border of<br />

the Ap<strong>en</strong>n<strong>in</strong>es. Z<strong>in</strong>c and nickel were recorded as<br />

hav<strong>in</strong>g their maximum levels, respectively, <strong>in</strong><br />

Montecchio-Cavriago (361 mg/kg) and Quattro<br />

Castella (14.3 mg/kg).<br />

Ars<strong>en</strong>ic: Fig 60 shows the distribution of ars<strong>en</strong>ic <strong>in</strong><br />

the Reggio Emilia area. The maximum<br />

conc<strong>en</strong>tration of 21 mg/kg was reported <strong>in</strong> Villa<br />

M<strong>in</strong>ozzo. Other areas of high conc<strong>en</strong>tration were


observed, while the average level of 1.49 mg/kg<br />

was recorded over the majority of the territory.<br />

Cocchi et al. (2006) reported levels of 1.06 and<br />

1.52 mg/kg <strong>in</strong> Ag. arv<strong>en</strong>sis and Ag. silvicola<br />

respectively. In samples from some European<br />

countries and Brazil, Slejkovec et al. (1977) found<br />

6.24 and 3.32 mg/kg <strong>in</strong> Ag. silvicola and Ag.<br />

Macro-carpus, levels significantly higher than<br />

those observed <strong>in</strong> our study.<br />

Fig. 60. Spatial distribution of cadmium for section Arv<strong>en</strong>ses of g<strong>en</strong>us Agaricus.<br />

Lead: Fig. 61 shows that the maximum level (22.7<br />

mg/kg), can be found <strong>in</strong> the vic<strong>in</strong>ity of the city of<br />

In the region of Paris (France), Michelot et al.<br />

(1998) analysed 92 species of mushroom <strong>in</strong>clud<strong>in</strong>g<br />

Fig. 61. Spatial distribution of lead for section Arv<strong>en</strong>ses of g<strong>en</strong>us Agaricus.<br />

Reggio Emilia. The average conc<strong>en</strong>tration level of<br />

2.52 mg/kg was found across most of the territory.<br />

Ag. arv<strong>en</strong>sis, Ag. silvicola, Ag. altipes, f<strong>in</strong>d<strong>in</strong>g<br />

levels of 22, 31 and 33.4 mg/kg respectively.<br />

91


Demirbaş (2001) reported an average level of 0.92<br />

mg/kg <strong>in</strong> Ag. silvicola, to the east of the Black Sea.<br />

In the prov<strong>in</strong>ce of Lugo (Spa<strong>in</strong>), Garcia et al.<br />

(2009) found the same level (1.4 mg/kg) <strong>in</strong> both the<br />

cap and the stem of Ag. silvicola. Cocchi et al.<br />

(2006) reported 1.78 and 3.08 mg/kg <strong>in</strong> Ag.<br />

arv<strong>en</strong>sis and Ag. silvicola respectively <strong>in</strong> Reggio<br />

Emilia.<br />

For the section Arv<strong>en</strong>ses, as well as for the other<br />

taxa pres<strong>en</strong>ted here, the <strong>elem<strong>en</strong>ts</strong> ars<strong>en</strong>ic,<br />

chromium, nickel and lead t<strong>en</strong>d not to accumulate<br />

<strong>in</strong> the fruit<strong>in</strong>g bodies, while cadmium, mercury,<br />

copper and z<strong>in</strong>c, <strong>in</strong> desc<strong>en</strong>d<strong>in</strong>g order, do, despite<br />

low conc<strong>en</strong>trations of these <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> the soil.<br />

4.3.9 Group Boletus edulis (Subdivision<br />

Basidiomycot<strong>in</strong>a – Subclass<br />

Agaricomycetideae - Order Boletales)<br />

For the group Boletus edulis (B. aereus, B.<br />

reticulatus, B. edulis, B. p<strong>in</strong>ophilus), <strong>in</strong> addition to<br />

ars<strong>en</strong>ic, cadmium, chromium, copper, mercury,<br />

nickel, lead and z<strong>in</strong>c, sel<strong>en</strong>ium was also tak<strong>en</strong> <strong>in</strong>to<br />

consideration. An overview and a comparison of<br />

the spatial maps show<strong>in</strong>g the distribution of the<br />

92<br />

Table 13. Rresults of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 13. The first three compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 44% of the total variance.<br />

The first compon<strong>en</strong>t compreh<strong>en</strong>sively describes the<br />

aggregation of cadmium, mercury, copper and z<strong>in</strong>c<br />

which run <strong>in</strong> countert<strong>en</strong>d<strong>en</strong>cy to the other <strong>elem<strong>en</strong>ts</strong><br />

<strong>in</strong> the soil and soil acidity. The second compon<strong>en</strong>t<br />

associates with ars<strong>en</strong>ic and lead, while the third is<br />

<strong>in</strong>flu<strong>en</strong>ced by chromium and nickel, and is opposed<br />

to soil acidity and other <strong>elem<strong>en</strong>ts</strong>. It seems clear<br />

how these two groups of <strong>elem<strong>en</strong>ts</strong>, hav<strong>in</strong>g a totally<br />

differ<strong>en</strong>t behaviour <strong>in</strong> bioaccumulation, were<br />

separated dur<strong>in</strong>g the analysis of the ma<strong>in</strong><br />

constitu<strong>en</strong>ts.<br />

Compon<strong>en</strong>ts<br />

1 2 3<br />

As_FA .168 .703 .022<br />

Cd_FA .978 .048 .026<br />

Cr_FA .271 .033 .427<br />

Cu_FA .937 .225 .160<br />

Hg_FA .928 .093 .074<br />

Ni_FA -.121 .204 .827<br />

Pb_FA .137 .891 -.047<br />

Zn_FA .784 .512 .107<br />

pH_s -.119 .314 -.741<br />

elem<strong>en</strong>t conc<strong>en</strong>trations, highlights four types of<br />

"associations." The first is repres<strong>en</strong>ted by<br />

alum<strong>in</strong>ium, chromium, nickel and lead (figs. 62 →<br />

65). The maximum conc<strong>en</strong>tration levels are located<br />

<strong>in</strong> the hilly areas of Cas<strong>in</strong>a and Canossa. As for the<br />

similarities with the soil, there are only aff<strong>in</strong>ities<br />

for chromium and nickel, as also ev<strong>in</strong>ced by other<br />

species of fungi.


Average conc<strong>en</strong>tration levels are respectively 252<br />

mg/kg for alum<strong>in</strong>ium; 1.52 for chromium, 2.49 for<br />

nickel and 0.8 mg/kg for lead. A second group is<br />

composed of copper, mercury and z<strong>in</strong>c, the average<br />

levels of which are respectively 37, 3.52 and 138<br />

mg/kg. The third group is composed of cadmium<br />

and sel<strong>en</strong>ium, with maximum levels (15.7 and 223<br />

mg/kg, respectively) found at the border with<br />

Tuscany. The fourth group is formed by ars<strong>en</strong>ic<br />

Fig. 62. Spatial distribution of alum<strong>in</strong>ium for the group Boletus edulis.<br />

Fig. 63. Spatial distribution of chromium for the group Boletus edulis.<br />

only: its maximum level of 3 mg/kg was observed<br />

near Quattro Castella.<br />

Similar conc<strong>en</strong>tration levels of almost all <strong>elem<strong>en</strong>ts</strong><br />

analysed were found <strong>in</strong> samples of B. edulis <strong>in</strong><br />

F<strong>in</strong>land (Nikkar<strong>in</strong><strong>en</strong> and Mertan<strong>en</strong>, 2004). We<br />

found lead, sel<strong>en</strong>ium and z<strong>in</strong>c to have lower levels,<br />

however at: 0.18, 18.5 and 91 mg/kg. Falandysz et<br />

al. (2008) found sel<strong>en</strong>ium at lower amounts still,<br />

rang<strong>in</strong>g betwe<strong>en</strong> 8.7 and 32 mg/kg <strong>in</strong> the<br />

mounta<strong>in</strong>ous regions of Poland.<br />

93


In Greece Ouzoun et al. (2009) observed lower<br />

conc<strong>en</strong>tration levels for cadmium (0.23 mg/kg),<br />

chromium (0.86 mg/kg), nickel (1.61 mg/kg), lead<br />

0.09 mg/kg) and z<strong>in</strong>c (89 mg/kg), and an almost<br />

id<strong>en</strong>tical level to copper (41 mg/kg) <strong>in</strong> B. aereus.<br />

Higher conc<strong>en</strong>tration values <strong>in</strong> the Boletaceae were<br />

found by Demirbaş (2001) <strong>in</strong> an area east of the<br />

Black Sea for ars<strong>en</strong>ic (1.41 mg/kg), nickel (65<br />

mg/kg) and lead (6.9 mg/kg). Lower levels were<br />

found by the same author for cadmium (1.36<br />

94<br />

Fig. 64. Spatial distribution of nickel for the group Boletus edulis.<br />

Fig. 65. Spatial distribution of lead for the group Boletus edulis.<br />

mg/kg), chromium (0.86 mg/kg), copper (11.5<br />

mg/kg), mercury (0.48 mg/kg) and z<strong>in</strong>c (19.6<br />

mg/kg).<br />

In the region of Paris (France), Michelot et al.<br />

(1998) analysed 92 species of mushroom <strong>in</strong>clud<strong>in</strong>g<br />

B. edulis and found 5.35 mg/kg for nickel and 21.2<br />

mg/kg for lead. Smaller amounts were found for<br />

cadmium (1.39 mg/kg), chromium (1.34 mg/kg),<br />

copper (14.9 mg/kg), mercury (40.6 mg/kg) and<br />

z<strong>in</strong>c (55.4 mg/kg). In a rec<strong>en</strong>t paper by Frankowski


et al. (2010), the conc<strong>en</strong>tration levels of heavy<br />

metals <strong>in</strong> specim<strong>en</strong>s of B. edulis collected <strong>in</strong><br />

Poland are reported. The conc<strong>en</strong>trations <strong>in</strong> the<br />

mushroom caps are significantly higher (Cd 5.5; Cu<br />

47; Hg 4.9 and Zn 190 mg/kg). Similar levels were<br />

observed <strong>in</strong> the mounta<strong>in</strong>s <strong>in</strong> Poland (Falandysz et<br />

al., 2008); the follow<strong>in</strong>g conc<strong>en</strong>tration <strong>in</strong>tervals<br />

have be<strong>en</strong> proposed: Cd (4-18 mg/kg), Cu (26-57<br />

mg/kg), Hg (0.95-2.39 mg/kg) and Zn (150-210<br />

mg/kg).<br />

Enrichm<strong>en</strong>t factors confirm the t<strong>en</strong>d<strong>en</strong>cy of<br />

ars<strong>en</strong>ic, chromium, nickel and lead to not<br />

bioaccumulate, ev<strong>en</strong> <strong>in</strong> soils with high<br />

conc<strong>en</strong>trations of the same <strong>elem<strong>en</strong>ts</strong>. This is <strong>in</strong><br />

strong contrast to copper, z<strong>in</strong>c and especially<br />

cadmium, mercury and sel<strong>en</strong>ium, which have a<br />

pronounced ability to bioaccumulate <strong>in</strong> the fruit<strong>in</strong>g<br />

The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis,<br />

which relate the conc<strong>en</strong>trations of heavy metals <strong>in</strong><br />

<strong>mushrooms</strong> and the soil as well as pH levels, are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 14. The first four compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 84% of the total variance.<br />

Table 14. Results of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

Compon<strong>en</strong>ts<br />

1 2 3 4<br />

Al_b .918 .020 -.042 -.202<br />

Cd_b -.153 -.086 .394 .436<br />

Cr_b .952 .064 .054 -.222<br />

Cu_b -.037 -.048 .731 .160<br />

Hg_b .195 .007 .418 .141<br />

Ni_b .936 -.052 -.005 -.199<br />

Pb_b .939 -.001 -.069 -.171<br />

Se_b -.022 -.251 .157 .483<br />

Zn_b -.321 .113 .692 -.030<br />

pH_s .130 .398 -.401 -.621<br />

Al_s -.353 -.056 -.027 .682<br />

As_s -.200 .211 -.281 .751<br />

Cd_s .140 .476 -.689 .169<br />

Cr_s .790 .322 -.029 .204<br />

Cu_s .070 .876 -.037 .041<br />

Hg_s .229 -.095 .808 -.237<br />

Ni_s .825 .339 .037 -.132<br />

Pb_s .080 .667 -.157 -.369<br />

Se_s .076 .576 -.423 .640<br />

Zn_s .166 .917 .062 -.078<br />

bodies of fungi ev<strong>en</strong> at low conc<strong>en</strong>trations of<br />

metals <strong>in</strong> the soil. This has be<strong>en</strong> confirmed by<br />

García et al. (2009); Falandysz et al. (2002) Jorhem<br />

and Sundström (1995), Kalač et al. (1989b) and<br />

Cocchi et al. (2006). In particular, the last group of<br />

researchers has shown that the species of the<br />

Boletus edulis are able to accumulate large<br />

quantities of sel<strong>en</strong>ium. A further confirmation<br />

comes from a study by Frankowski et al. (2010)<br />

who also analysed the soil collected <strong>in</strong> the vic<strong>in</strong>ity<br />

of the fungi. The <strong>en</strong>richm<strong>en</strong>t factors were higher<br />

for Zn, Cd, Cu and Hg, <strong>in</strong> asc<strong>en</strong>d<strong>in</strong>g order,<br />

demonstrat<strong>in</strong>g the ability of Boletus edulis to<br />

bioaccumulate these four <strong>elem<strong>en</strong>ts</strong>, ev<strong>en</strong> if the soil<br />

has low conc<strong>en</strong>trations of them (Zn 22; Cd 0.35,<br />

Cu 2.8 and Hg 0.04 mg/kg).<br />

In compon<strong>en</strong>t one, it is clear that the pH does not<br />

affect and is not l<strong>in</strong>ked to any <strong>elem<strong>en</strong>ts</strong> either <strong>in</strong> the<br />

fungi or <strong>in</strong> the soil, while chromium and nickel <strong>in</strong><br />

soil have a similar qualitative behaviour as they do<br />

<strong>in</strong> fungi <strong>in</strong> addition to lead and alum<strong>in</strong>ium. Z<strong>in</strong>c <strong>in</strong><br />

95


species of Boletus edulis and alum<strong>in</strong>ium <strong>in</strong> soils<br />

exist <strong>in</strong> countert<strong>en</strong>d<strong>en</strong>cy.<br />

Compon<strong>en</strong>t two shows that, as Cocchi et al. (2006)<br />

observed, sel<strong>en</strong>ium <strong>in</strong> the species of the Boletus<br />

edulis is not related to the conc<strong>en</strong>tration of the<br />

same elem<strong>en</strong>t <strong>in</strong> the soil. Copper, lead and z<strong>in</strong>c are<br />

l<strong>in</strong>ked and t<strong>en</strong>d to <strong>in</strong>crease regardless of the levels<br />

<strong>in</strong> the soil. The third constitu<strong>en</strong>t demonstrates that<br />

soil pH, sel<strong>en</strong>ium and cadmium <strong>in</strong> the soil are<br />

l<strong>in</strong>ked together and <strong>in</strong> countert<strong>en</strong>d<strong>en</strong>cy to copper,<br />

z<strong>in</strong>c and mercury <strong>in</strong> fungi, and to the latter elem<strong>en</strong>t<br />

<strong>in</strong> the soil. This highlights the bioaccumulat<strong>in</strong>g<br />

properties of mercury (Falandysz et al., 2002). The<br />

fourth constitu<strong>en</strong>t b<strong>in</strong>ds cadmium and sel<strong>en</strong>ium <strong>in</strong><br />

4.3.10 G<strong>en</strong>us Cantharellus (Subdivision<br />

Basidiomycot<strong>in</strong>a – Subclass<br />

Aphyllophoromycetideae – Order<br />

Cantharellales)<br />

The maps show a similarity betwe<strong>en</strong> the couples of<br />

cadmium/mercury and chromium/nickel (Figs. 66<br />

→ 69). The rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> (ars<strong>en</strong>ic, copper,<br />

lead and z<strong>in</strong>c) have very heterog<strong>en</strong>eous<br />

conc<strong>en</strong>tration distributions.<br />

Cadmium and mercury: these have average levels<br />

of 0.49 and 12.23 mg/kg respectively, while their<br />

highest levels are found <strong>in</strong> hilly areas of Cas<strong>in</strong>a and<br />

96<br />

Table 15. Rresults of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

the species of the Boletus edulis to ars<strong>en</strong>ic and<br />

sel<strong>en</strong>ium <strong>in</strong> the soils and <strong>in</strong> countert<strong>en</strong>d<strong>en</strong>cy to lead<br />

<strong>in</strong> soils, thereby confirm<strong>in</strong>g the strong capacity for<br />

bioaccumulation of sel<strong>en</strong>ium (Cocchi et al., 2006).<br />

Enrichm<strong>en</strong>t factors (Table 15) show that the pH is<br />

unconnected to most <strong>elem<strong>en</strong>ts</strong>. Compon<strong>en</strong>t two<br />

clarifies that high acidity levels are <strong>in</strong>versely<br />

proportional to high conc<strong>en</strong>tration levels of<br />

chromium, mercury, and sel<strong>en</strong>ium, themselves<br />

runn<strong>in</strong>g <strong>in</strong> countert<strong>en</strong>d<strong>en</strong>cy to lead. This is<br />

illustrated by the values of ma<strong>in</strong> compon<strong>en</strong>t three.<br />

Compon<strong>en</strong>ts<br />

1 2 3<br />

pH_s .055 -.428 -.769<br />

As_FA .915 .361 -.042<br />

Cd_FA .686 .003 .212<br />

Cr_FA .419 .869 -.047<br />

Cu_FA .922 .317 -.012<br />

Hg_FA .179 .946 .019<br />

Ni_FA .833 .306 .236<br />

Pb_FA .301 -.244 .677<br />

Se_FA .436 .835 .183<br />

Zn_FA .857 .435 .099<br />

Baiso and <strong>in</strong> the mounta<strong>in</strong> range betwe<strong>en</strong> Busana<br />

and Villa M<strong>in</strong>ozzo. In the area of Epirus and<br />

Macedonia, Ouzoun et al. (2009) rec<strong>en</strong>tly reported<br />

cadmium conc<strong>en</strong>trations of 0.38 mg/kg, <strong>in</strong> perfect<br />

agreem<strong>en</strong>t with those observed <strong>in</strong> this study. Also<br />

<strong>in</strong> Greece (Ouzoun et al. (2007) 0.41 mg/kg of<br />

cadmium was found <strong>in</strong> Ca. cibarius. For mercury,<br />

<strong>in</strong> the Czech Republic, <strong>in</strong> an area with many silver<br />

m<strong>in</strong>es, the average level was 0.25 mg/kg (Svoboda<br />

et al., 2006). In Svoboda et al. (2000), reported<br />

mercury conc<strong>en</strong>trations were similar to those<br />

observed by us <strong>in</strong> the Reggio Emilia Ap<strong>en</strong>n<strong>in</strong>es.


Chromium and nickel: these <strong>elem<strong>en</strong>ts</strong> (Figs. 68<br />

and 69) have average levels of 2.9 and 2.3 mg/kg<br />

respectively, while their maximum levels are 57<br />

and 29 mg/kg. These levels were found <strong>in</strong> the<br />

mounta<strong>in</strong>s betwe<strong>en</strong> Vetto and Ramiseto. There<br />

seems to be no l<strong>in</strong>k betwe<strong>en</strong> these and soil acidity,<br />

although conc<strong>en</strong>tration levels <strong>in</strong> the soil do<br />

correlate to mushroom conc<strong>en</strong>tration levels. In<br />

Greece, lower conc<strong>en</strong>tration levels of chromium<br />

Fig. 66. Spatial distribution of cadmium for the g<strong>en</strong>us Cantharellus.<br />

Fig. 67. Spatial distribution of mercury for the g<strong>en</strong>us Cantharellus.<br />

(1.6 mg/kg) and nickel (1.1 mg/kg) were observed<br />

(Ouzoun et al., 2009).<br />

Enrichm<strong>en</strong>t Factor values showed, like the g<strong>en</strong>us<br />

Russula, little t<strong>en</strong>d<strong>en</strong>cy for ars<strong>en</strong>ic, chromium,<br />

nickel and lead to bioaccumulate <strong>in</strong> these<br />

<strong>mushrooms</strong> despite the soil be<strong>in</strong>g rich <strong>in</strong> the same<br />

<strong>elem<strong>en</strong>ts</strong>. On the other hand, cadmium, copper,<br />

mercury and z<strong>in</strong>c were able to bioaccumulate <strong>in</strong><br />

carpophores ev<strong>en</strong> where lower conc<strong>en</strong>trations of<br />

these metals were found <strong>in</strong> the soil.<br />

97


The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 16. The first three compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 79% of the total variance. In<br />

compon<strong>en</strong>t one the acidity of the soil is<br />

disconnected from all the <strong>elem<strong>en</strong>ts</strong>. While amounts<br />

of ars<strong>en</strong>ic, copper, mercury, lead, z<strong>in</strong>c and, to a<br />

lesser ext<strong>en</strong>t, cadmium <strong>in</strong>crease, those of nickel<br />

and chromium t<strong>en</strong>d to decrease. In compon<strong>en</strong>t two,<br />

as nickel and chromium <strong>in</strong>crease, a decrease <strong>in</strong><br />

98<br />

Fig. 68. Spatial distribution of chromium for the g<strong>en</strong>us Cantharellus.<br />

Fig. 69. Spatial distribution of nickel for the g<strong>en</strong>us Cantharellus.<br />

mercury and lead can be se<strong>en</strong>; this fact could be<br />

l<strong>in</strong>ked to the orig<strong>in</strong> of these two <strong>elem<strong>en</strong>ts</strong>, both<br />

notoriously <strong>in</strong>flu<strong>en</strong>ced by human activities. The<br />

third constitu<strong>en</strong>t shows that basic soil corresponds<br />

to a reduction <strong>in</strong> cadmium conc<strong>en</strong>trations, while<br />

other <strong>elem<strong>en</strong>ts</strong> rema<strong>in</strong> unchanged. This aspect of<br />

reduced bioaccumulation for cadmium has be<strong>en</strong><br />

shown <strong>in</strong> Ca. cibarius (Jorhem and Sundström,<br />

1995).


4.3.11 G<strong>en</strong>us Ramaria (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Aphyllophoromycetideae<br />

– Order Clavariales)<br />

Comparison of the maps show<strong>in</strong>g the spatial<br />

distribution of elem<strong>en</strong>t conc<strong>en</strong>trations reveals three<br />

Table 16. Results of pr<strong>in</strong>cipal compon<strong>en</strong>ts analysis.<br />

Constitu<strong>en</strong>ts<br />

1 2 3<br />

pH_s .076 .072 .860<br />

As_FA .963 .040 -.037<br />

Cd_FA .421 .149 -.708<br />

Cr_FA .227 .811 .034<br />

Cu_FA .935 .081 -.244<br />

Hg_FA .499 -.652 .177<br />

Ni_FA -.119 .760 .020<br />

Pb_FA .796 -.468 .215<br />

Zn_FA .919 -.093 -.153<br />

Fig. 70. Spatial distribution of alum<strong>in</strong>ium for the g<strong>en</strong>us Ramaria.<br />

types of "associations." The first is repres<strong>en</strong>ted by<br />

four <strong>elem<strong>en</strong>ts</strong>, namely alum<strong>in</strong>ium, lead, z<strong>in</strong>c and,<br />

to a lesser ext<strong>en</strong>t, copper (Figs. 70 → 72). The<br />

maximum conc<strong>en</strong>tration levels are observed <strong>in</strong> flat<br />

areas and those <strong>in</strong> the Ap<strong>en</strong>n<strong>in</strong>e border.<br />

99


The second group <strong>in</strong>cludes ars<strong>en</strong>ic, nickel and<br />

chromium (Fig. 73.) The areas with the highest<br />

conc<strong>en</strong>trations are found <strong>in</strong> Ramiseto, Vetto and <strong>in</strong><br />

Castelnovo nei Monti. The third group is composed<br />

of cadmium and mercury: the areas with the<br />

greatest conc<strong>en</strong>trations were located betwe<strong>en</strong> San<br />

100<br />

Fig. 71. Spatial distribution of z<strong>in</strong>c for the g<strong>en</strong>us Ramaria.<br />

Fig. 72. Spatial distribution of copper for the g<strong>en</strong>us Ramaria.<br />

Polo, Bibbiano and Montecchio. The<br />

conc<strong>en</strong>trations of alum<strong>in</strong>ium and chromium <strong>in</strong> the<br />

soil overlap with their distribution maps <strong>in</strong><br />

<strong>mushrooms</strong>, while the rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> only<br />

display a superposition of levels <strong>in</strong> some areas.


Figs. 74, 75 and 76 illustrate the distribution of the<br />

conc<strong>en</strong>tration levels of ars<strong>en</strong>ic, cadmium and lead.<br />

The average levels were 8.72, 5.74 and 0.98 mg/kg<br />

respectively. In Turkey, <strong>in</strong> Ra. Flava, ars<strong>en</strong>ic<br />

conc<strong>en</strong>trations of 0.02 mg/kg were observed<br />

(Konuk et al., 2007); this level is quite differ<strong>en</strong>t to<br />

Cadmium: as for cadmium, very low levels (1.13<br />

mg/kg) were reported <strong>in</strong> the area of Epirus and<br />

Macedonia <strong>in</strong> samples of Ra. Larg<strong>en</strong>tii by Ouzoun<br />

Fig. 73. Spatial distribution of chromium for the g<strong>en</strong>us Ramaria.<br />

Fig. 74. Spatial distribution of ars<strong>en</strong>ic for the g<strong>en</strong>us Ramaria.<br />

that se<strong>en</strong> <strong>in</strong> the prov<strong>in</strong>ce of Reggio Emilia. A more<br />

comparable level (3.7 mg/kg) was reported by<br />

Slejkovec et al. (1977) who analysed samples of<br />

<strong>mushrooms</strong> from several European countries and<br />

Brazil.<br />

et al. (2009). The value observed by Konuk et al.<br />

(2007) <strong>in</strong> samples of Ra. flava collected <strong>in</strong> Turkey<br />

(0.01 mg/kg) was 50 times lower than the<br />

101


m<strong>in</strong>imum we recorded (0.52 mg/kg). In the region<br />

of Paris (France), Michelot et al. (1998) analyzed<br />

Lead: the average conc<strong>en</strong>tration levels we<br />

observed were significantly higher than those<br />

reported <strong>in</strong> previous literature [0.12 mg/kg<br />

Enrichm<strong>en</strong>t Factor values showed that cadmium,<br />

mercury, copper, z<strong>in</strong>c, ars<strong>en</strong>ic and nickel, <strong>in</strong><br />

desc<strong>en</strong>d<strong>in</strong>g order, accumulate <strong>in</strong> Ramaria<br />

102<br />

Fig. 75. Spatial distribution of cadmium for the g<strong>en</strong>us Ramaria.<br />

Fig. 76. Spatial distribution of lead for the g<strong>en</strong>us Ramaria.<br />

92 species of fungi, <strong>in</strong>clud<strong>in</strong>g Ramaria sp., and<br />

found levels of 4.32 mg/kg.<br />

(Ouzouni et al., 2009) and 0.018 mg/kg (Konuk et<br />

al., 2007)].<br />

carpophores <strong>in</strong> the pres<strong>en</strong>ce of small conc<strong>en</strong>trations<br />

of these metals <strong>in</strong> the soil, while lead and, to a<br />

lesser degree, chromium, do not t<strong>en</strong>d to accumulate


<strong>in</strong> <strong>mushrooms</strong> ev<strong>en</strong> if the soil is rich <strong>in</strong> these<br />

<strong>elem<strong>en</strong>ts</strong>.<br />

The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 17. The first three compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 92% of the total variance.<br />

The first compon<strong>en</strong>t expla<strong>in</strong>s how the acidity of the<br />

soil is not related to bioaccumulation of the<br />

<strong>elem<strong>en</strong>ts</strong> we tested: all <strong>elem<strong>en</strong>ts</strong> except lead t<strong>en</strong>d to<br />

4.3.12 G<strong>en</strong>us Morchella (Subdivision<br />

Ascomycot<strong>in</strong>a - Subclass Pezizomycetideae<br />

– Order Pezizales)<br />

One type of distribution is able to repres<strong>en</strong>t the<br />

conc<strong>en</strong>tration levels of alum<strong>in</strong>ium, mercury, nickel,<br />

z<strong>in</strong>c and to a lesser ext<strong>en</strong>t chromium and lead. The<br />

rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> ars<strong>en</strong>ic, cadmium and copper<br />

show differ<strong>en</strong>t types of "associations" for each of<br />

the six metals listed above. For alum<strong>in</strong>ium and<br />

other, more “associated”, <strong>elem<strong>en</strong>ts</strong>, the areas with<br />

the greatest conc<strong>en</strong>trations were Casalgrande and<br />

San Polo, and exclud<strong>in</strong>g chromium and lead, also<br />

the hilly areas. Ars<strong>en</strong>ic values reach their<br />

maximum near Reggio Emilia, cadmium <strong>in</strong> the<br />

areas of Toano, Villa M<strong>in</strong>ozzo and Quattro<br />

Castella, while copper is found <strong>in</strong> high<br />

conc<strong>en</strong>trations near Castellarano and Castelnovo<br />

Monti.<br />

Consider<strong>in</strong>g a quantitative overlap with soil<br />

conc<strong>en</strong>trations, lead showed the greatest aff<strong>in</strong>ity,<br />

Tabella17. results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

1<br />

Compon<strong>en</strong>t<br />

2 3<br />

pH_s .129 .011 .985<br />

As_FA .909 .187 .090<br />

Cd_FA .960 .040 .060<br />

Cr_FA .757 .549 .216<br />

Cu_FA .927 .047 .061<br />

Hg_FA .819 .380 .308<br />

Ni_FA .952 .280 .073<br />

Pb_FA .063 .956 -.020<br />

Zn_FA .950 -.079 .141<br />

<strong>in</strong>crease their conc<strong>en</strong>tration <strong>in</strong> the fruit<strong>in</strong>g bodies of<br />

fungi.<br />

The second compon<strong>en</strong>t confirms no relation to<br />

other <strong>elem<strong>en</strong>ts</strong> or pH levels for the<br />

bioaccumulation of lead and chromium. The third<br />

confirms the <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>ce of the acidity of the soil<br />

from all <strong>elem<strong>en</strong>ts</strong> considered.<br />

but to a lesser ext<strong>en</strong>t also chromium and copper.<br />

Cadmium: the distribution of cadmium<br />

conc<strong>en</strong>trations is shown <strong>in</strong> Fig. 77, the average<br />

level is 0.94 mg/kg and covers much of the<br />

territory. The highest levels (4.12 mg/kg) were<br />

observed betwe<strong>en</strong> Toano and Villa M<strong>in</strong>ozzo and <strong>in</strong><br />

the area of Canossa. In the same area Cocchi et al.<br />

(2006) observed 12.55 mg/kg <strong>in</strong> Mo. escul<strong>en</strong>ta. In<br />

Turkey (Tüz<strong>en</strong>, 2003) Mo. escul<strong>en</strong>ta conta<strong>in</strong>ed 1.43<br />

mg/kg. Also <strong>in</strong> Turkey, <strong>in</strong> Mo. escul<strong>en</strong>ta, Mo.<br />

escul<strong>en</strong>ta var. umbr<strong>in</strong>a, Mo. vulgaris, Mo. costata,<br />

Mo. deliciosa, and Mo. rigida cadmium<br />

conc<strong>en</strong>trations were 0.031, 0.002, 0.036, 0.024,<br />

0.029, 0.007 mg/kg respectively (Konuk et al.,<br />

2007). These levels are 20-200 times lower than<br />

those reported <strong>in</strong> this paper and giv<strong>en</strong> <strong>in</strong> literature.<br />

In France, <strong>in</strong> samples of Mo. escul<strong>en</strong>ta, a<br />

conc<strong>en</strong>tration of 3.6 mg/kg was observed (Michelot<br />

et al., 1998).<br />

103


Nickel: Fig. 78 repres<strong>en</strong>ts the conc<strong>en</strong>tration of<br />

nickel <strong>in</strong> the Reggio Emilia area. The maximum<br />

level of 12.2 mg/kg was observed <strong>in</strong> the lowlands<br />

near Scandiano. The average level of 2.4 mg/kg is<br />

commonly found all over the area. In France a<br />

conc<strong>en</strong>tration of 15.4 mg/kg, higher than the<br />

maximum level we measured, was found <strong>in</strong> a<br />

sample of Mo. escul<strong>en</strong>ta (Michelot et al., 1998).<br />

Tüz<strong>en</strong> (2003) <strong>in</strong> Turkey recorded 1.18 mg/kg <strong>in</strong><br />

104<br />

Fig. 77. Spatial distribution of cadmium for the g<strong>en</strong>us Morchella.<br />

Fig. 78. Spatial distribution of nickel for the g<strong>en</strong>us Morchella.<br />

Mo. escul<strong>en</strong>ta; a value <strong>in</strong> l<strong>in</strong>e with the data<br />

pres<strong>en</strong>ted here. In Turkey Mo. escul<strong>en</strong>ta, Mo.<br />

escul<strong>en</strong>ta var. umbr<strong>in</strong>a, Mo. vulgaris, Mo costata,<br />

Mo. deliciosa, and Mo. rigida were found to<br />

conta<strong>in</strong> nickel conc<strong>en</strong>trations of 0.07; 0.68; 0.04;<br />

0.4; 0.23; 0.41 mg/kg, respecitvely (Konuk et al.,<br />

2007); these levels are at least an order of<br />

magnitude lower than those we recorded.


For complet<strong>en</strong>ess, we provide here several data for<br />

two species of the g<strong>en</strong>us Helvella (order Pezizales):<br />

Cadmium: 1.97 mg/kg <strong>in</strong> Helvella crispa (Scop.)<br />

Fr. (Cocchi et al., 2006) and 0.033 mg/kg <strong>in</strong><br />

Helvella leucopus Pers. (Konuk et al., 2007);<br />

Nickel: 0.3 mg/kg <strong>in</strong> Helvella leucopus Pers.<br />

(Konuk et al., 2007)<br />

For the g<strong>en</strong>us Morchella as it was for other taxa,<br />

ars<strong>en</strong>ic, chromium, nickel and lead do not t<strong>en</strong>d to<br />

In the first compon<strong>en</strong>t soil acidity and copper are<br />

l<strong>in</strong>ked but at the same time <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t of other<br />

<strong>elem<strong>en</strong>ts</strong>, <strong>in</strong>stead, <strong>in</strong> the second copper and z<strong>in</strong>c<br />

move <strong>in</strong> the same direction and are differ<strong>en</strong>tiated<br />

from both the pH and from almost all other<br />

<strong>elem<strong>en</strong>ts</strong>. The third re<strong>in</strong>forces the neutrality<br />

towards soil acidity for all <strong>elem<strong>en</strong>ts</strong>, except, <strong>in</strong> part,<br />

for mercury that t<strong>en</strong>ds to <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g<br />

pH, while the lead does the opposite and t<strong>en</strong>ds to<br />

decrease as soil pH rises.<br />

4.3.13 Conclusions<br />

The analytical results obta<strong>in</strong>ed by analys<strong>in</strong>g<br />

thousands of differ<strong>en</strong>t fungi belong<strong>in</strong>g to hundreds<br />

of species have yielded distribution maps of heavy<br />

metals <strong>in</strong> an area with diverse geomorphological<br />

features rang<strong>in</strong>g from lowland areas to the<br />

Ap<strong>en</strong>n<strong>in</strong>e peaks. The land use <strong>in</strong>cludes resid<strong>en</strong>tial<br />

zones such as the city of Reggio Emilia and other<br />

major urban c<strong>en</strong>tres, busy ma<strong>in</strong> roads, <strong>in</strong>dustrial<br />

areas, agricultural areas and other <strong>in</strong>t<strong>en</strong>sively<br />

farmed pasture, and woods and forests. There is a<br />

rich diversity of flora, fauna and countryside where<br />

many daily activities are carried out, leav<strong>in</strong>g<br />

"footpr<strong>in</strong>ts" that comb<strong>in</strong>e to change the very nature<br />

of the <strong>en</strong>vironm<strong>en</strong>t.<br />

Table 18. Analysis of ma<strong>in</strong> constitu<strong>en</strong>ts.<br />

1<br />

Constitu<strong>en</strong>ts<br />

2 3<br />

pH_s -.043 .120 .964<br />

As_FA .934 .307 -.029<br />

Cd_FA .976 .142 -.014<br />

Cr_FA .966 -.154 .032<br />

Cu_FA .140 .954 .174<br />

Hg_FA .816 .161 .329<br />

Ni_FA .957 .140 -.131<br />

Pb_FA .802 .377 -.206<br />

Zn_FA .797 .502 -.091<br />

accumulate <strong>in</strong> the fruit<strong>in</strong>g bodies. In contrast, and<br />

<strong>in</strong> desc<strong>en</strong>d<strong>in</strong>g order, the <strong>elem<strong>en</strong>ts</strong> z<strong>in</strong>c, cadmium,<br />

mercury and copper (Falandysz et al., 2002) t<strong>en</strong>d to<br />

accumulate <strong>in</strong> the fruit<strong>in</strong>g bodies (though not <strong>in</strong> a<br />

marked manner) ev<strong>en</strong> if the soil has low<br />

conc<strong>en</strong>trations.<br />

The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 18. The first three compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 94% of the total variance.<br />

The results obta<strong>in</strong>ed from analys<strong>in</strong>g <strong>mushrooms</strong><br />

cannot tell us how we should behave as regards the<br />

chemical <strong>elem<strong>en</strong>ts</strong> conta<strong>in</strong>ed <strong>in</strong>side them, <strong>in</strong><br />

particular heavy metals. The results of the spatial<br />

conc<strong>en</strong>tration distributions are quite differ<strong>en</strong>t from<br />

each other and "dom<strong>in</strong>ated" by species-specific<br />

factors for each fungus such as the l<strong>en</strong>gth, depth<br />

and age of the mycelium, the type of elem<strong>en</strong>t under<br />

<strong>in</strong>vestigation, its chemical form and its availability<br />

<strong>in</strong> the soil substrate, the type of soil-substrate, the<br />

organic matter <strong>in</strong> the soil substrate, vegetation, the<br />

degree of humidity, and many other unknown<br />

factors, some of which are still unknown.<br />

One important aspect that should perhaps be<br />

<strong>in</strong>vestigated further is the ability of fungi to<br />

accumulate heavy metals, ev<strong>en</strong> if the soil has no<br />

high conc<strong>en</strong>trations of these. In this study we have<br />

se<strong>en</strong> that some <strong>elem<strong>en</strong>ts</strong>, such as cadmium, copper,<br />

mercury and z<strong>in</strong>c t<strong>en</strong>d to accumulate <strong>in</strong> differ<strong>en</strong>t<br />

fungal species regardless of the nature and<br />

conc<strong>en</strong>trations of <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> the soil-substrate.<br />

Such has be<strong>en</strong> confirmed for mercury (Falandysz et<br />

al., 2002) and for mercury, and cadmium (Vetter,<br />

1994, Kalac and Svobova, 2000). It has also be<strong>en</strong><br />

observed that, <strong>in</strong> g<strong>en</strong>eral, ars<strong>en</strong>ic, chromium, nickel<br />

and lead do not t<strong>en</strong>d to accumulate <strong>in</strong> fungi, ev<strong>en</strong> if<br />

the soil is rich <strong>in</strong> these <strong>elem<strong>en</strong>ts</strong>, a fact confirmed<br />

105


for lead (Kalac and Svobova, 2000, García et al.,<br />

2009).<br />

Giv<strong>in</strong>g "guidel<strong>in</strong>es" at pres<strong>en</strong>t is rather difficult and<br />

premature. In the light of curr<strong>en</strong>t knowledge, the<br />

use of <strong>mushrooms</strong> as bio<strong>in</strong>dicators of soil quality<br />

and the <strong>en</strong>vironm<strong>en</strong>t, is still <strong>in</strong> the embryonic<br />

stages and not yet viable, ev<strong>en</strong> if some fungal<br />

species could be used as “warn<strong>in</strong>g <strong>mushrooms</strong>”.<br />

Future <strong>in</strong>vestigations <strong>in</strong> the same area could expand<br />

the <strong>in</strong>formation available for one or more species of<br />

mushroom, allow<strong>in</strong>g some to be def<strong>in</strong>ed and used<br />

as <strong>en</strong>vironm<strong>en</strong>tal bio<strong>in</strong>dicators.<br />

Based on the wealth of data and considerations<br />

pres<strong>en</strong>ted here, we th<strong>in</strong>k it is feasible to claim that,<br />

giv<strong>en</strong> the conc<strong>en</strong>tration levels of chemical <strong>elem<strong>en</strong>ts</strong><br />

<strong>in</strong> <strong>mushrooms</strong> <strong>in</strong> conjunction with the<br />

conc<strong>en</strong>trations of these metals <strong>in</strong> soils, this study<br />

could facilitate the id<strong>en</strong>tification of "threshold<br />

limits" for these heavy metal conc<strong>en</strong>trations,<br />

bear<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d their impact on human health,<br />

which would apply to the sale of certa<strong>in</strong> species of<br />

edible <strong>mushrooms</strong>.<br />

The names of the fungal species considered <strong>in</strong> this<br />

chapter have be<strong>en</strong> writt<strong>en</strong> <strong>in</strong> an abbreviated form to<br />

make the text more readable,. The species are now<br />

listed here alphabetically, alongside with their full<br />

names, <strong>in</strong> accordance with the taxonomy specified<br />

<strong>in</strong> paragraph 2.1.4.<br />

• Ag. altipes = Agaricus altipes (F. H. Møller)<br />

F. H. Møller<br />

• Ag. arv<strong>en</strong>sis = Agaricus arv<strong>en</strong>sis Schaeff.<br />

• Ag. bernardii = Agaricus bernardii Quél.<br />

• Ag. bisporus = Agaricus bisporus (J.E. Lange)<br />

Imbach<br />

• Ag. bitorquis = Agaricus bitorquis (Quél.)<br />

Sacc.<br />

• Ag. campestris = Agaricus campestris L.<br />

• Ag. cupreobrunneus = Agaricus cupreobruneus<br />

(Jul. Schäff. & Steer) Pilát.<br />

• Ag. macrocarpus = Agaricus macrocarpus<br />

(F.H. Møller) F.H. Møller<br />

• Ag. silvaticus = Agaricus silvaticus Schaeff.<br />

• Ag. silvicola = Agaricus silvicola (Vittad.)<br />

Peck.<br />

• Ag. ur<strong>in</strong>asc<strong>en</strong>s = Agaricus ur<strong>in</strong>asc<strong>en</strong>s (Jul.<br />

Schäff. & F.H. Møller) S<strong>in</strong>ger<br />

• Am. caesarea = Amanita caesarea (Scop.)<br />

Pers.<br />

106<br />

• Am. excelsa var. excelsa = Amanita excelsa<br />

var. excelsa (Fr.) P. Kumm.<br />

• Am. excelsa var. spissa = Amanita excelsa var.<br />

spissa (Fr.) Neville & Poumarat<br />

• Am. gemmata = Amanita gemmata (Fr.)<br />

Bertill.<br />

• Am. muscaria = Amanita muscaria (L.) Lam.<br />

• Am. ovoidea = Amanita ovoidea (Bull.) L<strong>in</strong>k<br />

• Am. panther<strong>in</strong>a = Amanita panther<strong>in</strong>a (DC.)<br />

Krombh.<br />

• Am. phalloides = Amanita phalloides (Vaill.<br />

ex Fr.) L<strong>in</strong>k<br />

• Am. rubesc<strong>en</strong>s = Amanita rubesc<strong>en</strong>s var.<br />

rubesc<strong>en</strong>s Pers.<br />

• Am. solitaria = Amanita solitaria (Bull.) Fr.<br />

• Am. vag<strong>in</strong>ata = Amanita vag<strong>in</strong>ata (Bull.)<br />

Lam.<br />

• Ar. mellea = Armillaria mellea (Vahl) P.<br />

Kumm.<br />

• Ar. tabesc<strong>en</strong>s = Armillaria tabesc<strong>en</strong>s (Scop.)<br />

Emel<br />

• B. aereus = Boletus aereus Bull.<br />

• B. reticulatus = Boletus reticulatus Schaeff.<br />

• B. edulis = Boletus edulis Bull.<br />

• B. p<strong>in</strong>ophilus = Boletus p<strong>in</strong>ophilus Pilát &<br />

Dermek<br />

• Ca. cibarius = Cantharellus cibarius Fr.<br />

• Cl. gibba = Clitocybe gibba (Pers.) P. Kumm.<br />

• Cl. nebularis = Clitocybe nebularis (Batsch)<br />

P. Kumm.<br />

• He. crispa = Helvella crispa (Scop.) Fr.<br />

• He. leucopus = Helvella leucopus Pers.<br />

• Hy. chrysodon = Hygrophorus chrysodon<br />

(Batsch) Fr.<br />

• Hy. eburneus = Hygrophorus eburneus (Bull.)<br />

Fr.<br />

• Hy. p<strong>en</strong>arius = Hygrophorus p<strong>en</strong>arius Fr.<br />

• Hy. russula = Hygrophorus russula (Schaeff.)<br />

Kauffman<br />

• geotropa = Infundibulicybe geotropa (Bull.)<br />

Harmaja<br />

• La. amethyst<strong>in</strong>a = Laccaria amethyst<strong>in</strong>a<br />

Cooke<br />

• La. fraterna = Laccaria fraterna (Sacc.)<br />

Pegler<br />

• La. laccata = Laccaria laccata (Scop.) Cooke<br />

• Le. nuda = Lepista nuda (Bull.) Cooke<br />

• Ly. decastes = Lyophyllum decastes (Fr.)<br />

S<strong>in</strong>ger<br />

• Ma. oreades = Marasmius oreades (Bolton)<br />

Fr.


• Mo. costata = Morchella costata (V<strong>en</strong>t.) Pers.<br />

• Mo. deliciosa = Morchella deliciosa Fr.<br />

• Mo. escul<strong>en</strong>ta = Morchella escul<strong>en</strong>ta (L.)<br />

Pers.<br />

• Mo. escul<strong>en</strong>ta var. umbr<strong>in</strong>a = Morchella<br />

escul<strong>en</strong>ta var. umbr<strong>in</strong>a (Boud.) S. Imai<br />

• Mo. rigida = Morchella rigida (Krombh.)<br />

Boud.<br />

• Mo. vulgaris = Morchella vulgaris (Pers.)<br />

Boud.<br />

• Ru. cyanoxantha = Russula cyanoxantha<br />

(Schaeff.) Fr.<br />

• Ru. delica = Russula delica Fr.<br />

• Ru. emetica = Russula emetica (Schaeff.)<br />

Pers.<br />

4.4 Sampl<strong>in</strong>g: a data sheet<br />

example<br />

Each sampl<strong>in</strong>g site, where both soil and fungal<br />

samples were collected, is described <strong>in</strong> detail and<br />

• Ra. flava = Ramaria flava (Schaeff.)<br />

• Ra. larg<strong>en</strong>tii = Ramaria larg<strong>en</strong>tii Marr & D.E.<br />

Stuntz<br />

• T. argyraceum = Tricholoma argyraceum<br />

(Bull.) Gillet<br />

• T. equestre = Tricholoma equestre (L.) P.<br />

Kumm.<br />

• T. terreum = Tricholoma terreum var terreum<br />

(Schaeff.) P. Kumm.<br />

• T. rutilans = Tricholomopsis rutilans<br />

(Schaeff.) S<strong>in</strong>ger<br />

• T. ustaloides = Tricholoma ustaloides<br />

Romagn.<br />

correctly georefer<strong>en</strong>ced, so that the analytical data<br />

of the samples can th<strong>en</strong> be used to create<br />

geostatistical maps.<br />

Here follows an example of one sample data sheet<br />

used <strong>in</strong> this study to describe the sample sites.<br />

107


Area and sample description<br />

108<br />

Sheet 1<br />

Map 1 Map 2<br />

Photo nr.1 Photo nr.2<br />

ID Toponym - Location: Fonte dell’Anatella<br />

Municipality: Rocca di Mezzo<br />

Geographic area: Abruzzo, Prov<strong>in</strong>cia dell’Aquila, Parco del Sir<strong>en</strong>te, Vel<strong>in</strong>o<br />

Sampl<strong>in</strong>g date: 7 Settembre 2005<br />

Coord<strong>in</strong>ates: Geographic coord<strong>in</strong>ate system: UTM/UPS Map Datum: WGS 84<br />

33T Long. 0379918 Lat. 4671322<br />

Altitude and <strong>in</strong>cl<strong>in</strong>ation: 1400 m; 5%<br />

Area description: Specim<strong>en</strong> found <strong>in</strong> the city of Fonte Anatella, on the basal portion of a beech<br />

(Fagus sylvatica L.) <strong>in</strong> the municipality of Rocca di Mezzo, <strong>in</strong> a beech forest on<br />

limestone matrix on the slopes of Mount Sir<strong>en</strong>te. Wooded slopes, d<strong>en</strong>se<br />

vegetation, steep terra<strong>in</strong>


Habitat: natural woodlands<br />

Substrate: Woody matrix<br />

Phylum: Basidiomycota<br />

Class: Basidiomycetes<br />

Order: Polyporales<br />

Family: Meripilaceae<br />

Fungus<br />

Specim<strong>en</strong> name: basidiocarp of Meripilus giganteus (Pers. : Fr.) P. Karst<strong>en</strong><br />

leg. Fabio S<strong>in</strong>iscalco, det. Carm<strong>in</strong>e S<strong>in</strong>iscalco<br />

Height: 94.5 cm (highest po<strong>in</strong>t of basidiocarp complex)<br />

Width: 139.5 cm (widest po<strong>in</strong>t of basidiocarp complex)<br />

Weight: 142.68 kg (total basidiocarp weight)<br />

Note: basidioma grow<strong>in</strong>g at the base of a<br />

beech tree betwe<strong>en</strong> the collar and large<br />

emerg<strong>in</strong>g roots.<br />

elem<strong>en</strong>t<br />

conc<strong>en</strong>tration<br />

mg/kg<br />

Analytical results<br />

elem<strong>en</strong>t<br />

conc<strong>en</strong>tration<br />

mg/kg<br />

Meripilus giganteus (Pers.) P. Karst.,<br />

elem<strong>en</strong>t<br />

conc<strong>en</strong>tration<br />

mg/kg<br />

Ag 1.11 Ge 0.001 Se 0.1<br />

Al 115 Hg 0.05 Sr 0.62<br />

As 0.2 K 27900 Ti 9.37<br />

Ba 1.18 La n.d. V 0.11<br />

Be 0.01 Li 0.13 Y n.d.<br />

B 10.4 Mg 1910 Zn 50.8<br />

Cd 2.25 Mn 4.67 Zr 0.18<br />

Ca 185 Mo 0.11 Cl n.d.<br />

Cs 0.06 Na 80.0 P 6270<br />

Cr 3.34 Ni 2.02 S 1310<br />

Co n.d. Pb 9.13<br />

Cu 107 Rb 23.4<br />

Fe 216 Sc n.d.<br />

134 Cs n.d.<br />

137 Cs n.d.<br />

40 K n.d.<br />

109


110<br />

Location of sample area<br />

Start<strong>in</strong>g from the macroarea,<br />

the three figures on<br />

the left describe the exact<br />

spot where the discovery<br />

and the collection of the<br />

fungus took place.


Bio<strong>in</strong>dication allows evaluat<strong>in</strong>g the effects of<br />

anthropic activity on the <strong>en</strong>vironm<strong>en</strong>t through the<br />

observation of liv<strong>in</strong>g organisms. The widespread<br />

use of macromycetes for bio<strong>in</strong>dication is oft<strong>en</strong><br />

limited by taxonomic difficulties, by <strong>in</strong>complete<br />

knowledge of fungal metabolism and physiology,<br />

and by the lack of data on the quality and<br />

characteristics of the substrate.<br />

Further obstacles to the correct <strong>in</strong>terpretation of<br />

<strong>en</strong>vironm<strong>en</strong>tal data through fungi are the lack of<br />

precision and accuracy <strong>in</strong> describ<strong>in</strong>g their habitat.<br />

This EUR report aims to help develop a work<strong>in</strong>g<br />

methodology and to show applicable concrete<br />

examples of the paths to take <strong>in</strong> the future.<br />

The first aspect which was studied here<strong>in</strong> was the<br />

measure of chemical substances conta<strong>in</strong>ed <strong>in</strong> the<br />

carpophores of spontaneous macromycetes.<br />

The second aspect considered was the “refer<strong>en</strong>ce<br />

mushroom”, a tool already <strong>in</strong> use for other<br />

organisms, and which could prove to be a key<br />

elem<strong>en</strong>t <strong>in</strong> unravell<strong>in</strong>g the issues surround<strong>in</strong>g<br />

chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> macromycete carpophores.<br />

We arrived at this by attempt<strong>in</strong>g to overcome the<br />

<strong>in</strong>itial difficulties of <strong>in</strong>terpret<strong>in</strong>g, with no available<br />

parameters, the significance of the pres<strong>en</strong>ce of<br />

differ<strong>en</strong>t chemical <strong>elem<strong>en</strong>ts</strong> (heavy metals <strong>in</strong><br />

particular) <strong>in</strong> fungi. The pres<strong>en</strong>ce of these <strong>elem<strong>en</strong>ts</strong><br />

was oft<strong>en</strong> surpris<strong>in</strong>g due to unexpected<br />

conc<strong>en</strong>tration levels and large differ<strong>en</strong>ces betwe<strong>en</strong><br />

very closely-related taxonomic species.<br />

The third aspect dealt with <strong>in</strong> this work was l<strong>in</strong>k<strong>in</strong>g<br />

fungal species with their habitats. This allowed us<br />

to observe important biodiversities which might be<br />

further <strong>in</strong>vestigated and studied <strong>in</strong> future work,<br />

with the aid of new technologies and with the help<br />

of <strong>en</strong>vironm<strong>en</strong>tal cod<strong>in</strong>g carried out by the<br />

CORINE programme and the European system of<br />

natural <strong>in</strong>formation, EUNIS. Follow<strong>in</strong>g this it will<br />

Chapter V<br />

Conclusions<br />

be possible to be guided by objective criteria wh<strong>en</strong><br />

describ<strong>in</strong>g habitats with specific macromycetes<br />

growth.<br />

We hope that our work may sparkle new ideas for<br />

study and research that could help support the use<br />

of these organisms <strong>in</strong> <strong>en</strong>vironm<strong>en</strong>tal assessm<strong>en</strong>ts.<br />

Such a feature will be important wh<strong>en</strong> consider<strong>in</strong>g<br />

the mycological compon<strong>en</strong>ts of terrestrial<br />

ecosystems, which is becom<strong>in</strong>g an <strong>in</strong>creas<strong>in</strong>gly<br />

important and relevant factor <strong>in</strong> the evaluation of<br />

global ecological balances.<br />

This work aims not to close but to op<strong>en</strong> a new<br />

vision with new opportunities for sci<strong>en</strong>tific<br />

research on the world of higher <strong>mushrooms</strong>, which<br />

is little understood and too oft<strong>en</strong> undervalued. By<br />

mak<strong>in</strong>g available to everyone this volume of data,<br />

that, <strong>in</strong> itself, constitutes an important contribution<br />

to the docum<strong>en</strong>tation of fungal biodiversity, we<br />

have above all aimed to describe a particular<br />

work<strong>in</strong>g methodology and some practical<br />

applications. We are conv<strong>in</strong>ced that it can be used<br />

to produce new research <strong>in</strong> this field.<br />

For example, we are conv<strong>in</strong>ced that taxonomic<br />

research should be based on a polyphasic approach<br />

that <strong>in</strong>cludes the collection and analysis of macro<br />

and microscopic data, <strong>in</strong>clud<strong>in</strong>g morphological,<br />

physiological, and biochemical features; further,<br />

the most accurate possible def<strong>in</strong>ition of each<br />

macromycete’s habitat; we believe that <strong>in</strong> this<br />

context the measurem<strong>en</strong>t of conc<strong>en</strong>trations of<br />

differ<strong>en</strong>t chemicals <strong>in</strong> and molecular characteristics<br />

of that habitat should be analysed.<br />

Last but not least we hope that our work will prove<br />

useful to all those who have differ<strong>en</strong>t levels of<br />

political and adm<strong>in</strong>istrative responsibility of the<br />

territories, especially regard<strong>in</strong>g the use of<br />

<strong>mushrooms</strong> as food.<br />

.<br />

111


112


AAVV (1991): CORINE Biotopes Manual. Habitats of<br />

European Community. Office for Official<br />

<strong>Publications</strong> of the European Communities,<br />

Luxembourg.<br />

AAVV (2004): “Carta della Natura alla scala 1:50.000 -<br />

Metodologia di realizzazione”. APAT,<br />

Manuali e L<strong>in</strong>ee Guida n. 30/2004.<br />

AAVV (2009a): Il progetto Carta della Natura alla scala<br />

1:50.000. L<strong>in</strong>ee guida per la cartografia e la<br />

valutazione degli habitat. ISPRA, Manuali e<br />

L<strong>in</strong>ee Guida n. 48/2009.<br />

AAVV (2009b): Gli habitat <strong>in</strong> Carta della Natura. Schede<br />

descrittive degli habitat per la cartografia alla<br />

scala 1:50.000. ISPRA, Manuali e L<strong>in</strong>ee Guida<br />

n. 49/2009.<br />

Abuz<strong>in</strong>adah R. A., Read D. J. (1989): “The role of<br />

prote<strong>in</strong>s <strong>in</strong> the nitrose nutrition of<br />

ectomycorrhizal plants. V. Nitrog<strong>en</strong> transfer <strong>in</strong><br />

birch, Betula p<strong>en</strong>dula L. grown <strong>in</strong> association<br />

with mycorrhizal and non mycorrhizal fungi”.<br />

New Phytologist, n.112, pp. 61-68.<br />

APAT (2005): La realizzazione <strong>in</strong> Italia del progetto<br />

europeo CORINE Land Cover 2000. Rapporti<br />

APAT, 61/2005.<br />

Bed<strong>in</strong>i S., Avio L., Argese E., Giovannetti M. (2007):<br />

“Effects of long-term land use on arbuscular<br />

mycorrhizal fungi and glomal<strong>in</strong>-related soil<br />

prote<strong>in</strong>”. Agriculture Ecosystems and<br />

Environm<strong>en</strong>t, n. 120, pp. 463-466.<br />

Bed<strong>in</strong>i S., Pellegr<strong>in</strong>o E., Avio L., Pellegr<strong>in</strong>i S., Bazzoffi<br />

P., Argese E., Giovannetti M. (2009):<br />

“Changes <strong>in</strong> soil aggregation and glomal<strong>in</strong>related<br />

soil prote<strong>in</strong> cont<strong>en</strong>t as affected by the<br />

arbuscular mycorrhizal fungal species Glomus<br />

mosseae and Glomus <strong>in</strong>traradices”. Soil<br />

Biology and Biochemistry, n. 41, pp. 1491-<br />

1496.<br />

B<strong>en</strong>civ<strong>en</strong>ga M., Calandra R., Granetti B. (1990):<br />

“Ricerche sui terr<strong>en</strong>i e sulla flora delle<br />

tartufaie naturali di T. melanosporum Vitt.<br />

dell’Italia c<strong>en</strong>trale”. Atti del 2° Congresso<br />

Internazionale sul Tartufo, Spoleto, 24-27<br />

novembre 1988, pp. 337-374.<br />

VI Bibliography<br />

B<strong>en</strong>civ<strong>en</strong>ga M., Calandra R., Giovagnotti E., Russi L.<br />

(1996): “Aspetti pedologici e vegetazionali<br />

delle tartufaie di alcune specie di “tartufi<br />

m<strong>in</strong>ori””. Annali della Facoltà di Agraria<br />

dell’Università di Perugia, n. 50, pp. 7-45.<br />

B<strong>en</strong>civ<strong>en</strong>ga M., Granetti B. (1990): “Flora, vegetazione<br />

e natura dei terr<strong>en</strong>i di alcune tartufaie<br />

naturali di Tuber magnatum Pico dell’Italia<br />

c<strong>en</strong>trale”. “Atti del 2° Congresso<br />

Internazionale sul Tartufo”, Spoleto 24-27<br />

novembre 1988, pp. 433-434.<br />

B<strong>en</strong>edetti A., Francaviglia R., Marchionni M.,<br />

Tr<strong>in</strong>chera A. (2006): “Soil Biodiversity<br />

Concepts and a case study at a Mediterranean<br />

Natural Ecosystem”. Accademia Nazionale<br />

delle Sci<strong>en</strong>ze detta dei XL. Scritti e docum<strong>en</strong>ti<br />

n. XXXVII, pp. 209-224.<br />

B<strong>en</strong>edetti A., Brookes P. C., Lynch J. (2006):<br />

Conclud<strong>in</strong>g remarks. In: Bloem J., Hopk<strong>in</strong>s D.<br />

and B<strong>en</strong>edetti A. (Eds.): “Microbial Methods<br />

for assess<strong>in</strong>g soil quality”. CABI Publish<strong>in</strong>g,<br />

pp. 63-70.<br />

B<strong>en</strong>edetti A., Gianfreda C. (2004): “Metodi di analisi<br />

biochimica del suolo”. Franco Angeli Ed.<br />

Bersan F. (2002): “Studio prelim<strong>in</strong>are per un t<strong>en</strong>tativo di<br />

dare un valore bio<strong>in</strong>dicatore a specie banali di<br />

funghi saprofiti <strong>in</strong> querceti mediterranei<br />

caducifolii”. Associazione Micologica<br />

Bresadola – Fondazione C<strong>en</strong>tro Studi<br />

Micologici, Tr<strong>en</strong>to – Vic<strong>en</strong>za. Pag<strong>in</strong>e di<br />

Micologia, n. 18, pp. 13-20.<br />

Bianco P. M., S<strong>in</strong>iscalco C. (2009): “Primo contributo<br />

all’abb<strong>in</strong>am<strong>en</strong>to della compon<strong>en</strong>te micologica<br />

agli habitat dunali”. In: Onori L. (Ed.): Il<br />

riprist<strong>in</strong>o degli ecosistemi mar<strong>in</strong>o-costieri e la<br />

difesa delle coste sabbiose nelle aree protette.<br />

ISPRA, Roma, Rapporti 100/2009, pp. 149-<br />

158.<br />

Bizio E. and Campo E. (1999): Funghi alp<strong>in</strong>i d’alta<br />

quota. “I funghi dove... quando”, n.<br />

61/62/63/64/65.<br />

Blaschke H. (1994): “Decl<strong>in</strong>e symptoms on roots of<br />

Quercus robur”. European Journal of Forest<br />

Pathology, n. 24, pp. 386-398.<br />

113


Bloem J., Hopk<strong>in</strong>s D. and B<strong>en</strong>edetti A. (Eds.) (2006):<br />

“Microbial Methods for Assess<strong>in</strong>g Soil<br />

Quality”. CABI Publish<strong>in</strong>g.<br />

Bosco M., Giovannetti L., Giovannetti M., Viti C.<br />

(2008a): “Ruolo dei microrganismi nei cicli<br />

biogeochimici”. In Biavati B., Sorl<strong>in</strong>i C. Eds.<br />

(2008): “Microbiologia Agroambi<strong>en</strong>tale”,<br />

Casa Editrice Ambrosiana, pp. 1-37.<br />

Bosco M., Giovannetti L., Giovannetti M., Viti C.<br />

(2008b): “La rizosfera e le associazioni<br />

microrganismi-piante”. In Biavati B., Sorl<strong>in</strong>i<br />

C. Eds. (2008): “Microbiologia<br />

Agroambi<strong>en</strong>tale”, Casa Editrice Ambrosiana,<br />

pp. 195-228.<br />

Brasier C. (1992): “A champion thallus”. Nature n. 356,<br />

pp. 382–383.<br />

Brookes P.C. (1994): “The use of microbial parameters<br />

<strong>in</strong> monitor<strong>in</strong>g soil pollution by heavy metal”.<br />

Biology and Fertility of Soils, n. 19, pp. 143-<br />

149.<br />

Callot G., Bye P., Raymond M., Fernandez D.,<br />

Pargney J. C., Parguey-Le Duc A., Janex-<br />

Favre M. C., Moussa R., Pages L. (1999):<br />

“La truffe, la terre, la vie“. Ed. INRA, Paris.<br />

Campos J. A., Tejera N. A. and Sánchez C. J. (2009):<br />

“Substrate role <strong>in</strong> the accumulatio of heavy<br />

metals <strong>in</strong> sporocarpus of wild fungi”.<br />

Biometals, Volume 22, pp. 835-841.<br />

Carlile M. J., Watk<strong>in</strong>son S. C., Gooday G. W. (2001):<br />

“The Fungi”. Academic Press, San Diego, pp.<br />

1-588.<br />

Carlon C., Critto A., Nathanail P., Marcom<strong>in</strong>i A.<br />

(2000): “Risk based characterisation of a<br />

contam<strong>in</strong>ated <strong>in</strong>dustrial site us<strong>in</strong>g multivariate<br />

and geostatistical tools”. Environm<strong>en</strong>tal<br />

Pollution. 111, 3, pp. 417-427.<br />

Caus<strong>in</strong> R., Montecchio L., Mutto Accordi S. (1996):<br />

“Probability of ectomycorrhizal <strong>in</strong>fection <strong>in</strong> a<br />

decl<strong>in</strong><strong>in</strong>g stand of common oak”. Annales des<br />

Sci<strong>en</strong>ces Forestières, n. 53, pp. 743-752.<br />

Cavalier-Smith, T. (1981): "Eukaryote k<strong>in</strong>gdoms: sev<strong>en</strong><br />

or n<strong>in</strong>e?" Biosystems 14, n. 3-4, pp. 461-81.<br />

Cavalier-Smith, T. (1993): "K<strong>in</strong>gdom protozoa and its<br />

18 phyla." Microbiol Rev 57, n. 4, pp. 953-94.<br />

Cavalier-Smith, T. (1998): "A revised six-k<strong>in</strong>gdom<br />

system of life." Biol Rev Camb Philos Soc 73,<br />

n. 3, pp. 203-66.<br />

114<br />

Cavalier-Smith, T. (2004): "Only six k<strong>in</strong>gdoms of life."<br />

Proc Biol Sci 271, n. 1545, pp. 1251-62.<br />

Cavalier-Smith, T. (2006): "Root<strong>in</strong>g the tree of life by<br />

transition analyses." Biol Direct 1, n. 19.<br />

C<strong>en</strong>ci R. M., Bergonzoni M., Bo F., Canovi L., Cont<strong>in</strong>i<br />

S., Guberti V., Locoro G., Meglioli E.,<br />

Musmeci L., Paracch<strong>in</strong>i B., Pedroni V.,<br />

Privitera M., Puglisi M., Roncari L., S<strong>en</strong>a<br />

F., Simonazzi N. e Tr<strong>in</strong>cher<strong>in</strong>i P. (2005):<br />

”Monitoraggio ambi<strong>en</strong>tale mediante l’impiego<br />

di suoli e di muschi per le discariche di Rio<br />

Riazzone, Rio Vigne e Poiatica di Reggio<br />

Emilia”. EUR 21561 IT. ISBN 92-894-9183-<br />

3.<br />

C<strong>en</strong>ci R. M., Dabergami D., Beccaloni E., Ziemacki<br />

G., B<strong>en</strong>edetti A., Pompili L., Mell<strong>in</strong>a A.S.,<br />

Bianchi M. (2008): "Bio<strong>in</strong>dicatori per<br />

valutare la qualità dei suoli di alcuni parchi<br />

della città di Roma" EUR 23567 IT ISSN<br />

1018-5593 ISBN: 978-92-79-10648-4<br />

Chiari M, Dogali D., Restelli V. (2008): “Funghi della<br />

Franciacorta (III contributo)”. Bollett<strong>in</strong>o del<br />

Circolo Micologico Car<strong>in</strong>i, n. 55, pp. 3-16.<br />

Clark I. and Harper W. V. (2004): “Practical<br />

Geostatistics”. Geostokos Ltd, Scotland.<br />

Cocchi L., Vescovi L., Petr<strong>in</strong>i O. (2006): “Il fungo di<br />

riferim<strong>en</strong>to: un nuovo strum<strong>en</strong>to nella ricerca<br />

micologica”. Atti del 3° Convegno<br />

Internazionale di Micotossicologia (Reggio<br />

Emilia, 6-7 dicembre 2004). Pag<strong>in</strong>e di<br />

Micologia, n. 25, pp. 51-66.<br />

Cocchi L., Vescovi L., Petr<strong>in</strong>i L. E., Petr<strong>in</strong>i O. (2006):<br />

“Heavy metals <strong>in</strong> edible <strong>mushrooms</strong> <strong>in</strong> Italy”.<br />

Food Chemistry, Volume 98, Issue 2, pp. 277-<br />

284.<br />

Cocchi L. (2009): “Radioattività e metalli pesanti, gli<br />

Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> higher <strong>mushrooms</strong>”. In<br />

P. Follesa: Manuale tecnico-pratico per<br />

<strong>in</strong>dag<strong>in</strong>i su campioni fung<strong>in</strong>i. Campioni<br />

ufficiali e non ufficiali. Intossicazione da<br />

funghi. Associazione Micologica Bresadola-<br />

Fondazione C<strong>en</strong>tro Studi Micologici, Tr<strong>en</strong>to-<br />

Vic<strong>en</strong>za.<br />

Commissione Europea: Decisione 82/72/CEE del<br />

Consiglio, del 3 dicembre 1981, concern<strong>en</strong>te la<br />

conclusione della conv<strong>en</strong>zione relativa alla<br />

conservazione della vita selvatica e<br />

dell’ambi<strong>en</strong>te naturale <strong>in</strong> Europa. GUCE n. 38<br />

del 10.2.1982.


Commissione Europea: Direttiva 92/43/CEE del<br />

Consiglio del 21 maggio 1992, relativa alla<br />

conservazione degli habitat naturali e<br />

sem<strong>in</strong>aturali e della flora e della fauna<br />

selvatiche. GUCE n. 206 del 22.07.1992.<br />

Dahlberg A. and Croneborg H. (2003): “The 33<br />

Threat<strong>en</strong>ed Fungi <strong>in</strong> Europe”. Nature and<br />

Environm<strong>en</strong>t, n. 136.<br />

Davies C.E., Moss D., Hill MO. (2004): EUNIS Habitat<br />

Classification Revised. Report to: European<br />

Environm<strong>en</strong>t Ag<strong>en</strong>cy - European Topic C<strong>en</strong>tre<br />

on Nature Protection and Biodiversity.<br />

Demirbaş A. (2000): “Accumulation of heavy metals <strong>in</strong><br />

some edible <strong>mushrooms</strong> from Turkey”. Food<br />

Chemistry, Volume 68, Issue 4, pp. 415-419.<br />

Demirbaş A. (2001): “Conc<strong>en</strong>trations of 21 metals <strong>in</strong> 18<br />

Species of <strong>mushrooms</strong> grow<strong>in</strong>g <strong>in</strong> the East<br />

Black Sea region”. Food Chemistry, Volume<br />

75, Issue 4, pp. 453-457.<br />

Doran J. W. and Park<strong>in</strong> T.B. (1994): “Def<strong>in</strong><strong>in</strong>g and<br />

assess<strong>in</strong>g soil quality”. In: Doran JW,<br />

Coleman DC, Bezdicek DF and Stewart BA<br />

(Eds.): “Def<strong>in</strong><strong>in</strong>g Soil Quality for a<br />

Susta<strong>in</strong>able Environm<strong>en</strong>t”, 35. American<br />

Society of Agronomy Special Publication,<br />

Madison, WI, 1994, pp. 3-21.<br />

European Commission (2007): Interpretation manual of<br />

european union habitats - EUR 27. DG<br />

Environm<strong>en</strong>t, Nature and biodiversity,<br />

Bruxelles.<br />

Falandysz J., Kunito T., Kubota R., Bielawski L.,<br />

Frankowska A., Falandysz J. J. and Tanabe<br />

S. (2008): “Multivariate characterization of<br />

<strong>elem<strong>en</strong>ts</strong> accumulated <strong>in</strong> k<strong>in</strong>g Bolete Boletus<br />

edulis mushroom at lowland and high<br />

mounta<strong>in</strong> regions”. Journal of Environm<strong>en</strong>tal<br />

Sci<strong>en</strong>ce and Health, Part A, Volume 4, pp.<br />

1692-1699.<br />

Falandysz J., Lipka K., Gucia M., Kawano M.,<br />

Strumnik K., Kannan K. (2002):<br />

“Accumulation factors of mercury <strong>in</strong><br />

<strong>mushrooms</strong> from Zaborski Landscape Park,<br />

Poland”. Environm<strong>en</strong>t International, Volume<br />

28, Issue 5, pp. 421-427.<br />

Frankowska A., Ziolkowska J., Bielawski L. and<br />

Falandysz J. (2010): “Food additives and<br />

contam<strong>in</strong>ants”. Part B, Volume 3, Issues 1,<br />

pp. 1-6.<br />

Gall<strong>in</strong>i L. (2001): “Comportam<strong>en</strong>to chimico e mobilità di<br />

alcuni metalli pesanti <strong>in</strong> un’area circostante<br />

una fonderia”. Tesi di Dottorato di Ricerca <strong>in</strong><br />

Chimica Agraria. Dipartim<strong>en</strong>to di Sci<strong>en</strong>ze<br />

M<strong>in</strong>eralogiche e Petrologiche – Dipartim<strong>en</strong>to<br />

di valorizzazione e Protezione delle Risorse<br />

Agroforestali, Università degli Studi di Tor<strong>in</strong>o.<br />

Departm<strong>en</strong>t of Chemistry and Chemical<br />

Eng<strong>in</strong>eer<strong>in</strong>g, University of Paisley, Glasgow.<br />

García M. Á., Alonso J., Melgar M. J. (2009): “Lead <strong>in</strong><br />

edible <strong>mushrooms</strong>: Levels and<br />

bioaccumulation factors”. Journal of<br />

Hazardous Materials, Volume 167, Issues 1-3,<br />

pp. 777-783.<br />

Giovagnotti E., Di Massimo G., B<strong>en</strong>civ<strong>en</strong>ga M. (1999):<br />

“Prove di coltivazione di Tuber borchii Vittad.<br />

<strong>in</strong> Italia”. Atti del 5ème Congrès International<br />

Sci<strong>en</strong>ce et Culture de la Truffe, 4-6 mars 1999,<br />

Aix-<strong>en</strong>-Prov<strong>en</strong>ce, France, pp. 260-264.<br />

Giovannetti M., Avio L. (2002): “Biotechnology of<br />

Arbuscular Mycorrhizas”. In Khachatourians<br />

G. G. and Arora D. K. Eds. Applied Mycology<br />

and Biotechnology, Vol. 2 Agriculture and<br />

Food Production”, pp. 275-310.<br />

Giovannetti M., Azzol<strong>in</strong>i D., Citernesi A. S. (1999):<br />

“Anastomosis and nuclear and protoplasmic<br />

exchange <strong>in</strong> arbuscular mycorrhizal fungi”.<br />

Applied and Environm<strong>en</strong>tal Microbiology 65,<br />

pp. 5571-5575.<br />

Giovannetti M., Avio L., Fortuna P., Pellegr<strong>in</strong>o E.,<br />

Sbrana C., Strani P. (2006): “At the root of<br />

the wood wide web: self recognition and nonself<br />

<strong>in</strong>compatibility <strong>in</strong> mycorrhizal networks”.<br />

Plant Signal<strong>in</strong>g and Behavior 1, pp. 1-5.<br />

Giovannetti M., Fortuna P., Citernesi A. S., Mor<strong>in</strong>i S.,<br />

Nuti M. P. (2001): “The occurr<strong>en</strong>ce of<br />

anastomosis formation and nuclear exchange<br />

<strong>in</strong> <strong>in</strong>tact arbuscular mycorrhizal networks”.<br />

New Phytologist, 151, pp. 717-724.<br />

Giovannetti M., Sbrana C., Avio L., Strani P. (2004):<br />

“Patterns of below-ground plant<br />

<strong>in</strong>terconnections established by means of<br />

arbuscular mycorrhizal networks”. New<br />

Phytologist 164, pp. 175-181.<br />

Glass N. L., Rasmuss<strong>en</strong> C., Roca M. G., Read N. D.<br />

(2004): “Hyphal hom<strong>in</strong>g, fusion and mycelial<br />

<strong>in</strong>terconnectedness”. Tr<strong>en</strong>ds <strong>in</strong> Microbiology<br />

12, pp. 135-141.<br />

Goovaerts P. (1997): “Geostatistics for natural<br />

resources evaluation”. Oxford University<br />

Press, New York.<br />

115


Granetti B., De Angelis A., Materozzi G. (2005):<br />

“Umbria terra di tartufi”. Gruppo Micologico<br />

Ternano, Regione dell’Umbria, Assessorato<br />

all’Agricoltura e Foreste, Perugia.<br />

Granetti B. (1994): “I tartufi: biologia e tecniche di<br />

coltivazione”. Micologia Italiana, n. 2; pp. 63-<br />

68.<br />

Gregory P. H. (1984): “The fungal mycelium: an<br />

historical perspective”. Transactions of the<br />

British Mycological Society 82, pp. 1-11.<br />

Hawksworth, D. L. (1991): "The fungal dim<strong>en</strong>sion of<br />

biodiversity: magnitude, significance, and<br />

conservation." Mycological Research 95, no.<br />

6, pp. 641-655.<br />

Hibbett, D. S. and B<strong>in</strong>der M., (2007): "A higher-level<br />

phylog<strong>en</strong>etic classification of the Fungi."<br />

Mycol Res 111, no. Pt. 5, pp. 509-547.<br />

Holmer L. and St<strong>en</strong>lid J. (1997): “Competitive<br />

hierarchies of wood decompos<strong>in</strong>g<br />

basidiomycetes <strong>in</strong> artificial systems based on<br />

variable <strong>in</strong>oculum sizes”. Oikos, n. 79, pp. 77-<br />

84.<br />

ICRP (International Commission on Radiological<br />

Protection) Publication 23: Refer<strong>en</strong>ce Man:<br />

Anatomical, Physiological and Metabolic<br />

Characteristics.<br />

Isaaks E. H., Srivastava R. M. (1989): “An <strong>in</strong>troduction<br />

to Applied Geostatistics”. Oxford press, New<br />

York.<br />

ISPRA (2009): “Indicatori di Biodiversità per la<br />

sost<strong>en</strong>ibilità <strong>in</strong> Agricoltura. L<strong>in</strong>ee guida,<br />

strum<strong>en</strong>ti e metodi per la valutazione della<br />

qualità degli agroecosistemi”. ISPRA, Roma,<br />

Manuali e L<strong>in</strong>ee Guida 47/2008.<br />

Jamoni P. (2008): “Funghi alp<strong>in</strong>i delle zone alp<strong>in</strong>e<br />

superiori e <strong>in</strong>feriori”. Associazione<br />

Micologica Bresadola, Tr<strong>en</strong>to.<br />

Jorhem L. and Sundström B. (1995): “Levels of some<br />

trace <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> edible fungi”. Zeitschrift für<br />

leb<strong>en</strong>smittel-untersuchung und forschung.<br />

Volume 201, pp. 311-316.<br />

Kalač P., Witt<strong>in</strong>gerová M., Stašková I., Šimák M. and<br />

Bastì J (1989b): “Cont<strong>en</strong>ts of mercury, lead<br />

and cadmium <strong>in</strong> <strong>mushrooms</strong>”. Českoslov<strong>en</strong>ská<br />

Hygi<strong>en</strong>a. Volume 34, pp. 568-576.<br />

Kalač P. and Svoboda L. (2000): “A review of trace<br />

elem<strong>en</strong>t conc<strong>en</strong>trations <strong>in</strong> edible <strong>mushrooms</strong>”.<br />

Food Chemistry, Volume 69, pp. 273-281.<br />

116<br />

K<strong>en</strong>drick, B. (1992): "The Fifth k<strong>in</strong>gdom." Ontario,<br />

Mycologic Publication.<br />

Koide R. T., Goff M. D., Dickie I. A. (2005):<br />

“Compon<strong>en</strong>t growth effici<strong>en</strong>cies of<br />

mycorrhizal and non mycorrhizal plants”.<br />

New Phytologist, n. 148, pp. 1563-1568.<br />

Konuk M., Afyon A. and Yagizv D. (2007): “M<strong>in</strong>or<br />

elem<strong>en</strong>t and heavy metal cont<strong>en</strong>ts of wild<br />

grow<strong>in</strong>g and edible <strong>mushrooms</strong> from western<br />

Black Sea region of Turkey”. Fres<strong>en</strong>ius<br />

Environm<strong>en</strong>tal Bullet<strong>in</strong>. Volume 16, n.11a, pp.<br />

1359-1362.<br />

Lantieri A. (2003): “Micoc<strong>en</strong>osi degli Ambi<strong>en</strong>ti Dunali<br />

della Sicilia Sud-Ori<strong>en</strong>tale”. Tesi di dottorato,<br />

Università degli Studi di Catania.<br />

Lavelle P. and Spa<strong>in</strong> A.V. (2001): “Soil Ecology”.<br />

Kluwer Academic Publishers, the Netherlands.<br />

Lavelle P. (1997): “Faunal activities and soil processes:<br />

adaptive strategies that determ<strong>in</strong>e ecosystem<br />

function”. Advances <strong>in</strong> Ecological Research,<br />

n. 27, pp. 93-132.<br />

Lilleskov E.A., Bruns T. D. (2001): “Nitrog<strong>en</strong> and<br />

ectomycorrhizal fungal communities: what we<br />

know, what we need to know”. New<br />

Phytologist, n. 149, pp. 154-158.<br />

L<strong>in</strong>naeus, C. (1753): "Species plantarum, exhib<strong>en</strong>tes<br />

plantas rite cognitas, ad g<strong>en</strong>era relatas, cum<br />

differ<strong>en</strong>tiis specificis, nom<strong>in</strong>ibus trivialibus,<br />

synonymis selectis, locis natalibus, secundum<br />

systema sexuale digestas." Stockholm, L.<br />

Salvius.<br />

Loreau M., Naeem S., Inchausti P., B<strong>en</strong>gtsson J.,<br />

Grime J. P., Hector A., Hooper D. U.,<br />

Huston M. A., Raffaelli D., Schmid B.,<br />

Tilman D., Wardle D. A. (2001):<br />

“Biodiversity and ecosystem function<strong>in</strong>g:<br />

curr<strong>en</strong>t knowledge and future chall<strong>en</strong>ges”.<br />

Sci<strong>en</strong>ce, n. 294, pp. 804-808.<br />

Maddison, D. R. and Schulz K. S. (2007): "The Tree of<br />

Life Web Project." last accessed: 2008,<br />

http://tolweb.org.<br />

Manion D., Lachance D. (1992): “Forest Decl<strong>in</strong>e<br />

Concepts”. APS Press, St. Paul, M<strong>in</strong>nesota,<br />

MN, USA.<br />

Marchi N., Sammart<strong>in</strong>o I., Amorosi A. and<br />

Guermandi M. (2009). “The pedogeochemical<br />

map as a support for <strong>en</strong>vironm<strong>en</strong>t<br />

plann<strong>in</strong>g strategies <strong>in</strong> Emilia-Romagna”.<br />

RemTech. Session 3: Remediation Techn.


Markert, B. (1992): “Establish<strong>in</strong>g of ‘Refer<strong>en</strong>ce Plant’<br />

for <strong>in</strong>organic characterization of differ<strong>en</strong>t<br />

plant species by chemical f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g”.<br />

Water Air Soil Pollution. 64 (3), pp. 533-538.<br />

McBratney A. B., Webster R., Burgess T. M. (1981):<br />

“The design of optimal sampl<strong>in</strong>g schemes for<br />

local estimation and mapp<strong>in</strong>g of regionalized<br />

variables - I. Theory and method”. Computers<br />

& Geosci<strong>en</strong>ces, 7 (4), pp. 331-334.<br />

M<strong>en</strong>dil D., Uluözlü Ö. D., Hasdemir E., Çağlar A.<br />

(2004): “Determ<strong>in</strong>ation of trace <strong>elem<strong>en</strong>ts</strong> on<br />

some wild edible mushroom samples from<br />

Kastamonu, Turkey”. Food Chemistry,<br />

Volume 88, Issue 2, pp. 281-285.<br />

M<strong>en</strong>ta C. (2008): “Guida alla conosc<strong>en</strong>za della biologia<br />

e dell’ecologia del suolo. Funzionalità,<br />

diversità biologica, <strong>in</strong>dicatori”. Oasi Alberto<br />

Perdisa Editore, Bologna.<br />

Michelot D., Siobud E., Doré J.-C., Viel C. and Poirier<br />

F. (1998): “Update on metal cont<strong>en</strong>t profiles<br />

<strong>in</strong> mushroom-toxicological implications and<br />

t<strong>en</strong>tative apprach to the mechanisms of bioaccumulation”.<br />

Toxicon, Volume 16, n. 12,<br />

pp. 1997-2012.<br />

Montecchi A, Saras<strong>in</strong>i M (2000): "Funghi ipogei<br />

d’Europa". Ed. Associazione Micologica<br />

Bresadola - Fondazione C<strong>en</strong>tro Studi<br />

Micologici, Tr<strong>en</strong>to-Vic<strong>en</strong>za, p. 714.<br />

Montecchio L. (2008): “Simbionti ectomicorrizici come<br />

<strong>in</strong>dicatori della salute delle piante forestali”.<br />

Atti del Ciclo di Sem<strong>in</strong>ari “I macromiceti<br />

come <strong>in</strong>dicatori biologici della qualità del<br />

territorio”, ISPRA, Dipartim<strong>en</strong>to Difesa della<br />

Natura, Progetto Speciale Funghi, Roma, 8<br />

aprile 2008,<br />

http://www.isprambi<strong>en</strong>te.it/Archivio/2008/Apr<br />

ile/.<br />

Monti G., Marchetti M., Gorreri L., Franchi P. (2000):<br />

“Funghi di ambi<strong>en</strong>ti dunali”. Pac<strong>in</strong>i Editore,<br />

Pisa.<br />

Mosca E., Montecchio L., Sella L., Garbaye J. (2007):<br />

“Short-term effect of remov<strong>in</strong>g tree<br />

competition on the ectomycorrhizal status of a<br />

decl<strong>in</strong><strong>in</strong>g pedunculate oak forest (Quercus<br />

robur L.)”. Forest Ecology and Managem<strong>en</strong>t,<br />

n. 244, pp. 129-140.<br />

Müller, E., Loeffler W. (1976): "Mycology: An Outl<strong>in</strong>e<br />

for Sci<strong>en</strong>ce and Medical Stud<strong>en</strong>ts" Thieme.<br />

Nees von Es<strong>en</strong>beck, C. G. D. (1816 - 1817): "Das<br />

System der Pilze und Schwämme (The<br />

Taxonomy of Mushrooms and Toadstools)."<br />

Würzburg.<br />

Nikkar<strong>in</strong><strong>en</strong> M. and Mertan<strong>en</strong> E. (2004): “Impact of<br />

geological orig<strong>in</strong> on trace elem<strong>en</strong>t<br />

composition of edible <strong>mushrooms</strong>”. Journal of<br />

Food Composition and Analysis, Volume 17,<br />

Issues 3-4, pp. 301-310.<br />

OECD (1999): “Environm<strong>en</strong>tal <strong>in</strong>dicators for<br />

Agriculture”, vol. II, Issues and Design. The<br />

York Workshop. OECD, Paris.<br />

Onofri S., Zucconi L. (1999): “Funghi e metalli pesanti:<br />

bio<strong>in</strong>dicazione, bioaccumulo e<br />

biorisanam<strong>en</strong>to”. Atti del Workshop<br />

Biomonitoraggio della qualità dell’aria sul<br />

territorio nazionale. ANPA, Serie Atti 2/1999,<br />

Roma, pp.155-170.<br />

Ouzouni P. K., Veltsistas P. G., Paleologos E. K.,<br />

Riganakos K. A. (2009): “Determ<strong>in</strong>ation of<br />

metal cont<strong>en</strong>t <strong>in</strong> wild edible mushroom Species<br />

from regions of Greece”. Journal of Food<br />

Composition and Analysis, Volume 20, Issue<br />

6, pp. 480-486.<br />

Ouzouni P. K., Petridis D., Koller W.-D., Riganakos<br />

K. A. (2007): “Nutritional value and metal<br />

cont<strong>en</strong>t of wild edible <strong>mushrooms</strong> collected<br />

from West Macedonia and Epirus, Greece”.<br />

Food Chemistry, Volume 115, Issue 4, pp.<br />

1575-1580.<br />

Pal<strong>en</strong>zona M., Curto A., Mond<strong>in</strong>o GP., Saqland<strong>in</strong> R.<br />

(1976): “Il tartufo di Bagnoli Tuber<br />

mes<strong>en</strong>tericum Vitt. : ambi<strong>en</strong>te di produzione e<br />

prospettive di conservazione e diffusione <strong>in</strong><br />

Irp<strong>in</strong>ia”. Ed. C.C.A.A., Avell<strong>in</strong>o.<br />

Parke J. L., L<strong>in</strong>derman R. G., Black C. H. (1983):<br />

“The role of ectomycorrhizas <strong>in</strong> drought<br />

tolerance of douglas fir seedl<strong>in</strong>gs”. New<br />

Phytologist, n. 95, pp. 83-95.<br />

Petr<strong>in</strong>i O., Cocchi L., Vescovi L., Petr<strong>in</strong>i L. (2009):<br />

“Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> <strong>mushrooms</strong>: their<br />

pot<strong>en</strong>tial taxonomic significance”. Mycol<br />

Progress. 8, pp.171-80.<br />

Petr<strong>in</strong>i O., Sieber T. N. (2000): ”Computer assisted<br />

taxonomy and docum<strong>en</strong>tation”. Chapter 8 <strong>in</strong>:<br />

McLaughl<strong>in</strong>, D. J., Mclaughl<strong>in</strong> E. G. &<br />

Lemke, P. A. (Eds.). The Mycota VII.<br />

Spr<strong>in</strong>ger-Verlag Berl<strong>in</strong> Heidelberg, pp. 203-<br />

215.<br />

117


Ravera O. (1981): “Necessità e limiti degli <strong>in</strong>dici e degli<br />

<strong>in</strong>dicatori biologici”. In: Onnis A and Ferrara<br />

R (Eds.): Colloquio su: Inqu<strong>in</strong>am<strong>en</strong>to e<br />

Indicatori Biologici. Roma, 3-4 giugno 1980.<br />

CNR, Collana del Programma F<strong>in</strong>alizzato<br />

“Promozione della Qualità dell’Ambi<strong>en</strong>te”<br />

AC/1/130-148. Arti Grafiche Pac<strong>in</strong>i Mariotti,<br />

Pisa, pp. 11-20.<br />

Rillig M. C., Hernandez G. Y., Newton P. C. D. (2000):<br />

“Arbuscular mycorrhizae respond to elevated<br />

atmospheric CO2 after long-term exposure:<br />

evid<strong>en</strong>ce from a CO2 spr<strong>in</strong>g <strong>in</strong> New Zealand<br />

supports the resource-balance model”.<br />

Ecology Letters 3, pp. 475-478.<br />

Robich G. (2003): “Myc<strong>en</strong>a d’Europa”. Ed.<br />

Associazione Micologica Bresadola, Fondazione<br />

C<strong>en</strong>tro Studi Micologici, Tr<strong>en</strong>to-<br />

Vic<strong>en</strong>za, p. 728<br />

Rousseau J.V.D., Sylvia D.M., Fox A.J. (1994):<br />

“Contribution of ectomycorrhizae to the<br />

pot<strong>en</strong>tial nutri<strong>en</strong>t-absorb<strong>in</strong>g surface of p<strong>in</strong>e”.<br />

New Phytologist, n.128, pp. 639-644.<br />

Saccardo, P. A. (1882-1931): "Sylloge fungorum omnium<br />

hucusque cognitorum." Patavii, sumptibus<br />

auctoris.<br />

Saras<strong>in</strong>i M. (2005): “Gasteromiceti epigei”. Ed. AMB,<br />

Fondazione C<strong>en</strong>tro Studi Micologici, Tr<strong>en</strong>to -<br />

Vic<strong>en</strong>za, p. 406.<br />

Sarnari M. (2000): “Monografia illustrata del g<strong>en</strong>ere<br />

Russula <strong>in</strong> Europa”. 2 Vol., AMB, Tr<strong>en</strong>to.<br />

Schütt P., Cowl<strong>in</strong>g E. B. (1985): “Waldsterb<strong>en</strong>, a<br />

g<strong>en</strong>eral decl<strong>in</strong>e of forests <strong>in</strong> c<strong>en</strong>tral Europe:<br />

symptoms, developm<strong>en</strong>t and possible causes”.<br />

Tree Disease, n. 69, pp. 548-558.<br />

S<strong>en</strong>n-Irlet B., Bieri G., Egli S. (2007): “Lista rossa delle<br />

specie m<strong>in</strong>acciate <strong>in</strong> Svizzera”. Ufficio<br />

federale dell’ambi<strong>en</strong>te UFAM, Birm<strong>en</strong>sdorf,<br />

Istituto federale di ricerca per la foresta, la<br />

neve e il paesaggio, Berna.<br />

Sequi P. (1981): “Il punto di vista di un chimico agrario<br />

sugli <strong>in</strong>dicatori biologici”. In: Onnis A and<br />

Ferrara R. (Eds.): Colloquio su: Inqu<strong>in</strong>am<strong>en</strong>to<br />

e Indicatori Biologici. Roma, 3-4 giugno 1980.<br />

CNR, Collana del Programma F<strong>in</strong>alizzato<br />

“Promozione della Qualità dell’Ambi<strong>en</strong>te”<br />

AC/1/130-148. Arti Grafiche Pac<strong>in</strong>i Mariotti,<br />

Pisa. pp. 21-28.<br />

118<br />

Sesli E., Tuz<strong>en</strong> M., Soylak M. (2008): “Evaluation of<br />

trace metal cont<strong>en</strong>ts of some wild edible<br />

<strong>mushrooms</strong> from Black sea region, Turkey”.<br />

Journal of Hazardous Materials, Volume 160,<br />

Issues 2-3, pp. 462-467.<br />

Shi L. B., Gutt<strong>en</strong>berger M., Kottke I., Hampp R.<br />

(2002): “The effect of drought on mycorrhizas<br />

of beech (Fagus sylvatica L.): changes <strong>in</strong><br />

community structure, and the cont<strong>en</strong>t of<br />

carbohydrates and nitrog<strong>en</strong> storage bodies of<br />

the fungi”. Mycorrhiza, n.12, pp. 303-311.<br />

Sieber T. N., Petr<strong>in</strong>i O., Gre<strong>en</strong>acre M. (1998):<br />

“Correspond<strong>en</strong>ce analysis as a tool <strong>in</strong> fungal<br />

taxonomy”. Syst. Appl. Microbiol., 21, pp.<br />

433–441.<br />

Siepel H. (1994): “Life-history tactics of soil<br />

microarthropods”. Biology and Fertility of<br />

Soils, n.18, pp. 263-278.<br />

Simard S. W., Perry D. A., Jones M. D., Myrold D. D.,<br />

Durall D. M., Mol<strong>in</strong>a R. (1997): “Net<br />

transfer of carbon betwe<strong>en</strong> ectomycorrhizal<br />

tree species <strong>in</strong> the field”. Nature 388, pp. 579-<br />

582.<br />

S<strong>in</strong>iscalco C. (<strong>in</strong> press): “I funghi come bio<strong>in</strong>dicatori<br />

della qualità del territorio”. Atti del<br />

Workshop Biodiversità dei suoli italiani: verso<br />

una normativa ambi<strong>en</strong>tale. Roma, 22 maggio<br />

2008. ISPRA, Roma.<br />

S<strong>in</strong>iscalco C. (2005): “Il ruolo della compon<strong>en</strong>te<br />

micologica negli ecosistemi dunali”. In: Onori<br />

L. (Ed.): Il riprist<strong>in</strong>o degli ecosistemi mar<strong>in</strong>ocostieri<br />

e la difesa delle coste sabbiose nelle<br />

aree protette. ISPRA, Roma, Rapporti<br />

100/2009, pp. 140-176.<br />

S<strong>in</strong>iscalco C., Tornambè A. (2002): “Considerazioni sul<br />

f<strong>en</strong>om<strong>en</strong>o di assorbim<strong>en</strong>to e accumulo di<br />

metalli pesanti nei funghi”. Atti del 2°<br />

Convegno Internazionale di Micotossicologia.<br />

Associazione Micologica Bresadola, C<strong>en</strong>tro<br />

Studi Micologici, Pag<strong>in</strong>e di Micologia, n. 17,<br />

pp. 191-226.<br />

Slejkovec Z., Byrne A. R., Stijve T., Goessler W. and<br />

Irgolic K. J. (1977): “Ars<strong>en</strong>ic compounds <strong>in</strong><br />

higher fungi”. Applied organometallic<br />

Chemistry, Volume 11, pp. 673-682.<br />

Smith M. L., Bruhn J. N., Anderson J. B. (1992): “The<br />

fungus Armillaria bulbosa is among the<br />

largest and oldest liv<strong>in</strong>g organisms”. Nature<br />

356, pp. 428–431.


Sova Z., Cibulka J., Száková J., Miholová D., Mader<br />

P. and Reisnerová H. (1991): “Cont<strong>en</strong>t of<br />

cadmium, mercury and lead <strong>in</strong> <strong>mushrooms</strong><br />

from two areas <strong>in</strong> Bohemia”. Sbornik<br />

Agronomické Fakulty. Volume 8, Issue 1, pp.<br />

13-29.<br />

Soylak M., Saraçoğlu S., Tüz<strong>en</strong> M., M<strong>en</strong>dil D. (2005):<br />

“Determ<strong>in</strong>ation of trace metals <strong>in</strong> mushroom<br />

samples from Kayseri, Turkey”. Food<br />

Chemistry, Volume 92, Issue 4, pp. 649-652.<br />

Ste<strong>in</strong>aker D. F. and Wilson S. D. (2008): “Scale and<br />

d<strong>en</strong>sity dep<strong>en</strong>d<strong>en</strong>t relationships among roots,<br />

mycorrhizal fungi and collembola <strong>in</strong> grassland<br />

and forest”. Oikos, n. 117, Issue 5, pp. 703-<br />

710.<br />

Stijve T., Besson R. (1976): “Mercury, cadmium, lead<br />

and sel<strong>en</strong>ium cont<strong>en</strong>t of mushroom species<br />

belong<strong>in</strong>g to the G<strong>en</strong>us Agaricus”.<br />

Chemosphere, Issue 2, pp. 151-158<br />

Stijve T., Vell<strong>in</strong>ga E., Hermann A. (1990): “Ars<strong>en</strong>ic<br />

accumulation <strong>in</strong> some higher fungi”.<br />

Persoonia, Volume 14, Issue 2, pp. 161-166<br />

Stijve T., Goessler W., Dupuy G. (2004): “Influ<strong>en</strong>ce of<br />

soil particles on conc<strong>en</strong>trations of alum<strong>in</strong>ium,<br />

iron, calcium and other metals <strong>in</strong><br />

<strong>mushrooms</strong>”. Dtsch leb<strong>en</strong>smitt Rundsch,<br />

Volume 100, Issue 1, pp. 10-13<br />

Svoboda L., Havlíčková B., Kalač P. (2006): “Cont<strong>en</strong>ts<br />

of cadmium, mercury and lead <strong>in</strong> edible<br />

<strong>mushrooms</strong> grow<strong>in</strong>g <strong>in</strong> a historical silverm<strong>in</strong><strong>in</strong>g<br />

area”. Food Chemistry, Volume 96,<br />

Issue 4, pp. 580-585.<br />

Tüz<strong>en</strong> M. (2003): “Determ<strong>in</strong>ation of heavy metals <strong>in</strong> soil,<br />

mushroom and plant samples by atomic<br />

absorption spectrometry”. Microchemical<br />

Journal, Volume 74, Issue 3, pp. 289-297.<br />

Tyler G., Balsberg Påhlsson A. M., B<strong>en</strong>gtsson G.,<br />

Bååth E., Tranvik L. (1989): “Heavy metal<br />

ecology of terrestrial plants, microorganism<br />

and <strong>in</strong>vertebrates”. A review. Water, Air, and<br />

Soil Pollution, n. 47, pp. 189-215.<br />

Vetter J. (1994): “Data on ars<strong>en</strong>ic and cadmium<br />

cont<strong>en</strong>ts of some common <strong>mushrooms</strong>”.<br />

Toxicon, Volume 32, pp. 11-15.<br />

Vizz<strong>in</strong>i A., Mello A., Ghignone S., Sechi C., Ruiu P.,<br />

Bonfante P. (2008): “Boletus edulis complex:<br />

from phylog<strong>en</strong>etic relationships to specific<br />

primers”. Pag<strong>in</strong>e di Micologia, (30), pp. 49-<br />

52.<br />

Whittaker R. H. (1969): “New Concepts of K<strong>in</strong>gdoms of<br />

Organisms”. Sci<strong>en</strong>ce 163, pp. 150-160.<br />

Woese C. R., Kandler O., Wheelis M. L. (1990):<br />

“Towards a natural system of organisms:<br />

Proposal for the doma<strong>in</strong>s Archaea, Bacteria,<br />

and Eucarya”. Proceed<strong>in</strong>gs of the National<br />

Academy of Sci<strong>en</strong>ce USA, 87, pp. 4576-4579.<br />

Wright S. F., Upadhyaya A. (1996): “Extraction of an<br />

abundant and unusual prote<strong>in</strong> from soil and<br />

comparison with hyphal prote<strong>in</strong> from<br />

arbuscular mycorrhizal fungi”. Soil Sci<strong>en</strong>ce,<br />

n. 161, pp. 575-586.<br />

Yamaç M., Yıldız D., Sarıkürkcü C., Çelikkollu M.,<br />

Solak M. H. (2007): “Heavy metals <strong>in</strong> some<br />

edible <strong>mushrooms</strong> from the C<strong>en</strong>tral Anatolia,<br />

Turkey”. Food Chemistry, Volume 103, Issue<br />

2, pp. 263-267.<br />

Zanella A., Tomasi M., De Si<strong>en</strong>a C., Frizzera L.,<br />

Jabiol B., Nicol<strong>in</strong>i G., Sartori G., Calabrese<br />

M. S., Mancabelli A., Nardi S., Pizzeghello<br />

D., Odasso M. (2001): “Humus Forestali”.<br />

Edizioni del C<strong>en</strong>tro di Ecologia Alp<strong>in</strong>a Tr<strong>en</strong>to.<br />

Zimmermannová K., Kalač P. (2000): “Conc<strong>en</strong>trations<br />

of mercury, cadmium, lead and copper <strong>in</strong><br />

fruit<strong>in</strong>g bodies of edible <strong>mushrooms</strong> <strong>in</strong> an<br />

emission area of a copper smelter and a<br />

mercury smelter”. The Sci<strong>en</strong>ce of The Total<br />

Environm<strong>en</strong>t, Volume 246, Issue 1, pp. 61-67.<br />

119


120


For a better understand<strong>in</strong>g of the book, we have<br />

decided to <strong>in</strong>clude descriptions and pictures of<br />

some fungal species studied, as well as some of the<br />

most <strong>in</strong>terest<strong>in</strong>g and commonly known fungal<br />

species. Pictures and descriptions are tak<strong>en</strong> from<br />

Volumes I (1999), II (2001) and III (2009) of the<br />

series “Atlante Photografico dei Funghi d’Italia”<br />

("Photographic Atlas of Italian Mushrooms"),<br />

published by the Fondazione C<strong>en</strong>tro Studi<br />

Micologici of the Associazione Micologica<br />

Bresadola, edited by Giovanni Consiglio, Carlo<br />

Papetti and, only for Vol. 1, Giampaolo Simon<strong>in</strong>i.<br />

In some casees the names of the species used by<br />

these authors are differ<strong>en</strong>t from those used here, for<br />

the reasons described <strong>in</strong> paragraph 2.1.4(page 20).<br />

As already expla<strong>in</strong>ed, the nom<strong>en</strong>clature follows<br />

www.<strong>in</strong>dexfungorum.org; synonyms are giv<strong>en</strong> <strong>in</strong><br />

square brackets.<br />

VII App<strong>en</strong>dix<br />

The descriptions also provide <strong>in</strong>formation on the<br />

edibility of each species (please note: “edible” is<br />

appropriate only if the mushroom is thoroughly<br />

cooked!)..<br />

The number of images pres<strong>en</strong>ted here is limited,<br />

compared to the number of fungal species<br />

occurr<strong>in</strong>g <strong>in</strong> nature; we believe, however, that it<br />

repres<strong>en</strong>ts appropriately the considerable pot<strong>en</strong>tial<br />

for biodiversity possible <strong>in</strong> the fungal k<strong>in</strong>gdom.<br />

Species are listed <strong>in</strong> alphabetical order for purely<br />

practical reasons and not accord<strong>in</strong>g to rigorous<br />

systematic criteria.<br />

The photographers are credited <strong>in</strong> “Atlante<br />

Photografico dei Funghi d’Italia”, with the sole<br />

exception of the image show<strong>in</strong>g Agaricus<br />

ur<strong>in</strong>asc<strong>en</strong>s, which was tak<strong>en</strong> by Ennio Carassai.<br />

121


122


CAP 80-140 mm, hemispheric, th<strong>en</strong> convex-flat, hairless,<br />

white, border<strong>in</strong>g on a silky sh<strong>in</strong>e, at maturity yellowish on<br />

circumfer<strong>en</strong>ce, f<strong>in</strong>ally, from yellow-citr<strong>in</strong>a to vivid ochre<br />

all over; edges hang<strong>in</strong>g with residues of veil.<br />

GILLS at the extremes from whitish to pale grey-p<strong>in</strong>k,<br />

th<strong>en</strong> p<strong>in</strong>k-grey<strong>in</strong>g and only with age from brown-purple<br />

to brown-black, crowded, free, width of 6-8 mm, with<br />

pale gill edge.<br />

STIPE 80-120 × 12-25 mm, cyl<strong>in</strong>drical, wid<strong>en</strong><strong>in</strong>g towards<br />

base but not bulbous, white, to the touch yellow-citr<strong>in</strong>a,<br />

annulus white, persist<strong>en</strong>t, high, broad, flar<strong>in</strong>g, yellow<br />

wh<strong>en</strong> handled, <strong>in</strong> two layers, lower layer has coarse<br />

white-ochre-ish scales , with appearance of a gear wheel.<br />

FLESH white, with age light h<strong>in</strong>t of ochre, thick <strong>in</strong> the<br />

c<strong>en</strong>tre, strong smell of aniseed, flavour of hazelnut.<br />

MICROSCOPY: ellipsoidal spores, smooth, under<br />

microscope dark brown, dim<strong>en</strong>sions 6.5-8 × 4.2-5.4 µm;<br />

tetrasporophyte basidia; marg<strong>in</strong>al cells from clavate to<br />

vescicle. Brown-black spores.<br />

Agaricus arv<strong>en</strong>sis Schaeff. : Fr.<br />

HABITAT: oft<strong>en</strong> gregarious, rarely isolated, from the<br />

spr<strong>in</strong>g to autumn, <strong>in</strong> meadows, <strong>in</strong> pastures, around the<br />

edges of woods. Infrequ<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE – Good to eat. The species of the subsection<br />

Flavesc<strong>en</strong>tes are however, natural conc<strong>en</strong>trators of silver,<br />

cadmium and mercury. The Flavesc<strong>en</strong>tes produce<br />

carpophores with an anise or hazelnut odour and are<br />

weakly yellow at the extremities. The caps t<strong>en</strong>d to be<br />

quite large, the gills at the extremes are a very pale fleshy<br />

grey, there will usually be evid<strong>en</strong>t yellow<strong>in</strong>g, the base of<br />

the stipe is large but not bulbous, all factors which<br />

facilitate the id<strong>en</strong>tification of this lovely species. It could<br />

be confused with Agaricus nivesc<strong>en</strong>s, which, however<br />

differs by hav<strong>in</strong>g a more modest yellow<strong>in</strong>g, and smaller<br />

and rounder spores. Another similar species is Agaricus<br />

xanthodermus, which has a slight odour of ph<strong>en</strong>ol,<br />

marg<strong>in</strong>ally bulbous stipe and on scratch<strong>in</strong>g shows a<br />

gold<strong>en</strong> yellow colour which is particularly evid<strong>en</strong>t at the<br />

base of the stipe and to a lesser degree <strong>in</strong> the flesh.<br />

123


CAP 60-160 mm, fleshy, <strong>in</strong>itially globular, th<strong>en</strong><br />

hemispheric or hemispheric-truncated, th<strong>en</strong> flat-convex<br />

with slight c<strong>en</strong>tral depression; edges convoluted ev<strong>en</strong> <strong>in</strong><br />

mature examples, striated on lower parts; cap cover<strong>in</strong>g<br />

white, white-grey<strong>in</strong>g, ochre-ish or ev<strong>en</strong> brownish, <strong>in</strong> the<br />

wide c<strong>en</strong>tral part, oft<strong>en</strong> dissociated <strong>in</strong> large irregular<br />

scales on a light background.<br />

GILLS free, crowded, wide, <strong>in</strong>itially whitish, th<strong>en</strong><br />

progressively dirty p<strong>in</strong>k, brown, dark brown, blackishbrown;<br />

sterile surface, light, m<strong>in</strong>utely d<strong>en</strong>ticulate.<br />

STIPE 40-80 × 20-35 mm, cyl<strong>in</strong>drical or v<strong>en</strong>tricular with<br />

po<strong>in</strong>ted base, robust, has a small annulus, simple and f<strong>in</strong>e<br />

towards the middle; above the annulus white and smooth,<br />

under the annulus whitish or grey-ochre-ish, smooth or<br />

with transversal bands concolour with the cap.<br />

FLESH firm white, reddish to gill edge. Odour normally<br />

strong and unpleasant of fish or of fish-eat<strong>in</strong>g birds. Cross<br />

reaction with Schäffer’s reag<strong>en</strong>t, negative.<br />

124<br />

Agaricus bernardii Quél. <strong>in</strong> Cooke & Quél.<br />

MICROSCOPY: spore mostly ellipsoidal to subglobose,<br />

mono- or biguttulate, more rarely multiguttulate, 6-8 ×<br />

4.5-6.5 µm. basidia clavate, tetrasporic. Cheilocystidia<br />

very numerous, multiform, usually cyl<strong>in</strong>drical, fusiform<br />

or clavate. Spores blackish-brown.<br />

HABITAT: gregarious, <strong>in</strong> small group<strong>in</strong>gs or <strong>in</strong> “witches’<br />

circles”, both <strong>in</strong> dune or <strong>in</strong> coastal areas, also <strong>in</strong> urban<br />

areas (for example under Cedrus) or <strong>in</strong> mounta<strong>in</strong>ous<br />

zones, but never <strong>in</strong>side woods; from the <strong>en</strong>d of spr<strong>in</strong>g to<br />

autumn.<br />

EDIBILITY: of no value<br />

NOTE - Is oft<strong>en</strong> confused, due to its similar appearance,<br />

with A. litoralis (Wakef. & A. Pearson) Pilát, which,<br />

however has a flar<strong>in</strong>g annulus, or with A. bitorquis<br />

(Quél.) Sacc., which, however has two lower annuli.


CAP 50-130 mm, fleshy, <strong>in</strong>itially hemispheric, th<strong>en</strong> flatconvex,<br />

f<strong>in</strong>ally flat; edges curv<strong>in</strong>g at the extremes; cap<br />

cover<strong>in</strong>g variable from white to ochre, up until brownish,<br />

outside the disc a little dissociated <strong>in</strong> triangulated<br />

fibrillated scales, adpressed, on a lighter background.<br />

GILLS free, fairly crowded, wide, <strong>in</strong>itially whitish, but<br />

soon p<strong>in</strong>k th<strong>en</strong> brown-reddish, f<strong>in</strong>ally brown-blackish,<br />

with light surface.<br />

STIPE 40-90 × 10-25 mm, cyl<strong>in</strong>drical or progressively<br />

wid<strong>en</strong>ed towards base, which is oft<strong>en</strong> a little bulbous,<br />

straight, tightly fistular, white, under the annulus f<strong>in</strong>ely<br />

fibrillated oft<strong>en</strong> with white mycelial cords. Annulus thick,<br />

normally triangular at division; due to its complex<br />

structure, to be considered <strong>in</strong>termediate (neither grow<strong>in</strong>g<br />

upwards nor downwards), ev<strong>en</strong> though it can be p<strong>en</strong>dant<br />

(droop<strong>in</strong>g or skirt-like) and more rarely, sheath<strong>in</strong>g<br />

(op<strong>en</strong><strong>in</strong>g upwards around the stipe).<br />

Agaricus bisporus (J.E. Lange) Imbach<br />

FLESH firm white, weakly p<strong>in</strong>k-reddish to gill edge.<br />

Odour weak, fungal. Cross reaction with Schäffer’s<br />

reag<strong>en</strong>t, negative.<br />

MICROSCOPY: spores mostly ellipsoidal, g<strong>en</strong>erally<br />

multiguttulate, 6.5-7.5 × 5-6 µm. basidia bisporic, but also<br />

monosporic (oft<strong>en</strong> very numerous) and more rarely<br />

trisporic or tetrasporic (these last most common <strong>in</strong> var.<br />

eurotetrasporus). Very numerous Cheilocystidia, clavate<br />

or a little fusiform, spores brown-blackish .<br />

HABITAT: gregarious, <strong>in</strong> small group<strong>in</strong>gs with isolated<br />

or clustered examples; common to fertilised ground or<br />

close to livestock <strong>en</strong>closures, rare <strong>in</strong> “wild” areas,<br />

g<strong>en</strong>erally under Cupressaceae. Spr<strong>in</strong>g and late autumn.<br />

EDIBILITY: edible<br />

NOTE – This is the only Agaricus with a great deal of<br />

bisporic basidia. It is good to eat and particularly suited to<br />

cultivation. It is produced <strong>in</strong>dustrially and sold almost all<br />

around the world.<br />

125


CAP 50-120 mm, first hemispheric, th<strong>en</strong> convex-flat,<br />

fleshy, firm, from pure white to dirty whitish, sometimes<br />

pale ochre-ish, smooth or with some under developed<br />

fibrils oft<strong>en</strong> covered by earth; edges convoluted and only<br />

with age dist<strong>en</strong>ded.<br />

GILLS from free to lightly adnate, close (4-6 mm),<br />

crowded, <strong>in</strong>itially pale p<strong>in</strong>k, soon becom<strong>in</strong>g full and dirty<br />

flesh p<strong>in</strong>k, and with age purple-black; gill edge whitish.<br />

STIPE 40-80 × 20-40 mm, cyl<strong>in</strong>drical, att<strong>en</strong>uated at base,<br />

full, rigid, from whitish to dirty p<strong>in</strong>k, at tip smooth or<br />

white and floccul<strong>en</strong>t; bear<strong>in</strong>g two membranous, white<br />

annuli, situated <strong>in</strong> the medial and basal zones of the stipe.<br />

FLESH thick, almost hard, gill edge, pale hazelnut, th<strong>en</strong><br />

tak<strong>in</strong>g tones of p<strong>in</strong>k, red w<strong>in</strong>e; sweet flavour, odour<br />

pronounced and pleasant.<br />

MICROSCOPY: spore mostly ellipsoidal, almost<br />

rounded, smooth, under microscope brown to yellowish<br />

126<br />

Agaricus bitorquis (Quélet) Saccardo<br />

shades; dim<strong>en</strong>sions 4.5-6 × 4-5.5 µm; tetrasporic basidia;<br />

clavate cells. Brown-purple spores.<br />

HABITAT: oft<strong>en</strong> gregarious on bare, sandy or compact<br />

soil at roadsides, <strong>in</strong> parks, riverside areas and streams,<br />

ev<strong>en</strong> under asphalt, from late spr<strong>in</strong>g to late autumn.<br />

EDIBILITY: edible<br />

NOTE - Good to eat. The species is recognisable among<br />

other taxa from the section Bitorques by the clear set of<br />

double annuli, pleasant odour and the short stipe wh<strong>en</strong><br />

compared to the diameter of the cap. The validus variety<br />

grows <strong>in</strong> clusters, has more compact and more heavily<br />

redd<strong>en</strong>ed flesh. It can be confused with the more fragile<br />

A. campestris, which has an ephemeral annulus and more<br />

brightly-coloured gills, and A. bisporus, which has a<br />

simple annulus and bisporic basidia.


CAP 50-120 mm, <strong>in</strong>itially globular, soon convex-flat,<br />

fleshy, white to whitish, sometimes suffused with p<strong>in</strong>k,<br />

silky-fibrillated, under developed fibrils more or less<br />

conc<strong>en</strong>tric, scales turn brown with age; at the extremes<br />

convoluted, rarely dist<strong>en</strong>ded oft<strong>en</strong> bear<strong>in</strong>g remnants of<br />

veil.<br />

GILLS free, close, with lamellule, p<strong>in</strong>k while still young<br />

concolour with gill edge, th<strong>en</strong> purple-black <strong>in</strong> maturity.<br />

STIPE 50-80 × 10-18 mm, more or less cyl<strong>in</strong>drical, but<br />

oft<strong>en</strong> att<strong>en</strong>uated at base, full, rigid white, bear<strong>in</strong>g f<strong>in</strong>e<br />

white dirty fibrils, brown<strong>in</strong>g with age; annulus tight and<br />

fragile, flar<strong>in</strong>g, of cottony consist<strong>en</strong>cy, white, just<br />

redd<strong>en</strong><strong>in</strong>g especially <strong>in</strong> the stipe-cap jo<strong>in</strong>, thick c<strong>en</strong>trally,<br />

with pleasant odour and sweet flavour.<br />

MICROSCOPY: oval spores, under microscope pale<br />

grey-brown, with just visible germ<strong>in</strong>at<strong>in</strong>g pores,<br />

dim<strong>en</strong>sions 6.5-8 × 4.5-5.5 µm; tetrasporophyte basidia.<br />

HABITAT: <strong>in</strong> fertilised meadows, <strong>in</strong> wheel tracks, <strong>in</strong> city<br />

parks, <strong>in</strong> small group<strong>in</strong>gs or <strong>in</strong> circles of many<br />

<strong>in</strong>dividuals; from the start of summer to late autumn.<br />

Agaricus campestris L. : Fr.<br />

EDIBILITY: edible<br />

NOTE - Good to eat. It is one of most r<strong>en</strong>own and<br />

gathered edible Agaricus species, and is well known<br />

everywhere. It is easily recognisable by its shape, its<br />

odour, which is neither anise nor of almonds, the flesh,<br />

which wh<strong>en</strong> bruised assumes a shade of red, the fugacious<br />

annulus and the stipe, which is oft<strong>en</strong> po<strong>in</strong>ted at its base. It<br />

belongs to the g<strong>en</strong>us Agaricus characterised by their<br />

fragile carpophores, flar<strong>in</strong>g annuli and gills which t<strong>en</strong>d to<br />

red at the extremes. There are many forms and varieties<br />

about which the Authors do not agree; the var.<br />

squamulosus, <strong>in</strong> particular, which displays brownish<br />

conc<strong>en</strong>tric scales on its cap. Confusable with the Agaricus<br />

species <strong>in</strong> the section Xanthodermatei, which are<br />

poisonous, but which have yellow<strong>in</strong>g flesh and an <strong>in</strong>ky<br />

smell.<br />

127


128<br />

Agaricus cupreobrunneus (Jul. Schäff. & Steer ex F.H. Möller) Pilát<br />

CAP 30-90 mm, <strong>in</strong>itially globular, th<strong>en</strong> hemispheric with<br />

truncated edges and with flatt<strong>en</strong>ed c<strong>en</strong>tre, f<strong>in</strong>ally flatconvex<br />

with slight c<strong>en</strong>tral depression; cap cover<strong>in</strong>g<br />

brownish copper, or ev<strong>en</strong> of vary<strong>in</strong>g tones of brown, <strong>in</strong><br />

adulthood whitish silky-fibrillated edges; oft<strong>en</strong> the cap<br />

can be completely white with brown scales towards the<br />

c<strong>en</strong>tre.<br />

GILLS free, fairly crowded, wide, with lamellule, from<br />

light p<strong>in</strong>k to vivid p<strong>in</strong>k up until brown-reddish, at<br />

maturity brown-blackish; edges concolour with surface.<br />

STIPE 20-70 × 8-20 mm, clavate-v<strong>en</strong>tricular oft<strong>en</strong> with<br />

po<strong>in</strong>ted base, but also cyl<strong>in</strong>drical, from full to tightly<br />

fistular, white, under the annulus smooth or f<strong>in</strong>ely<br />

fibrillated but bear<strong>in</strong>g several more or less complete labra<br />

of the same colour as the cap.<br />

FLESH white, uniform to gill edge, or just p<strong>in</strong>k <strong>in</strong> the top<br />

part of the stipe and close to the gills. Light odour, fungal.<br />

Cross reaction with Schäffer’s reag<strong>en</strong>t, negative.<br />

MICROSCOPY: ellipsoidal spores, g<strong>en</strong>erally mono- and<br />

biguttulate or with granular cont<strong>en</strong>t, 7-9 × 4.5-6 µm.<br />

basidia clavate, tetrasporic. Cheilocystidia isolated,<br />

almost abs<strong>en</strong>t. Spores brown-dark purple.<br />

HABITAT: gregarious <strong>in</strong> small group<strong>in</strong>gs or <strong>in</strong> “witches’<br />

circles” <strong>in</strong> large grassy areas, both <strong>in</strong> the mounta<strong>in</strong>s and<br />

near coastal and urban areas; autumn.<br />

EDIBILITY: edible<br />

NOTE - Fairly rare but quite widespread, <strong>in</strong> its place of<br />

growth it is prized as a delicacy, considered superior to A.<br />

campestris L. : Fr. for its firmer flesh. A similar species is<br />

A. porphyrocephalus F.H. Møller, and it is oft<strong>en</strong> difficult<br />

to dist<strong>in</strong>guish them macroscopically, but the latter has<br />

decidedly smaller spores. Its shape, with a white cap and<br />

brown scales <strong>in</strong> the c<strong>en</strong>tre, is similar to A. campestris var.<br />

squamulosus (Rea) Pilát, which is today considered<br />

synonymous with A. cupreobrunneus.


CAP 80-150 (180) mm, hemispheric, th<strong>en</strong> for a long<br />

while convex, f<strong>in</strong>ally dist<strong>en</strong>ded, dry and silky, fairly<br />

regular lip, with hang<strong>in</strong>g-floccules from remnants of veil;<br />

white, th<strong>en</strong> irregularly suffused with yellowish tones,<br />

more ochre-ish and <strong>in</strong>t<strong>en</strong>se around circumfer<strong>en</strong>ce.<br />

GILLS highly crowded, free from stipe, <strong>in</strong>tercalated with<br />

lamellule; <strong>in</strong>itially whitish, th<strong>en</strong> grey-p<strong>in</strong>k, p<strong>in</strong>k, and<br />

f<strong>in</strong>ally brown- dark purple-ish, keep<strong>in</strong>g a (sterile) whitish<br />

surface.<br />

STIPE 80-130 (150) × 20-30 mm, robust, cyl<strong>in</strong>drical,<br />

sometimes a little att<strong>en</strong>uated at tip, with a very squashed<br />

basal bulb, typically <strong>in</strong> the shape of elephant feet; white,<br />

sta<strong>in</strong>ed yellow-ochre-ish at base, <strong>in</strong> some adult<br />

specim<strong>en</strong>s, more or less flocular fibrils under the annulus.<br />

ANNULUS broad, thick, fairly persist<strong>en</strong>t, flar<strong>in</strong>g,<br />

coarsely decorated with the shape of a gear wheel on the<br />

lower surface; white.<br />

Agaricus macrocarpus (F.H. Møller) F.H. Møller<br />

FLESH white, nearly uniform <strong>in</strong> cap, t<strong>en</strong>d<strong>en</strong>cy to turn<br />

yellow on stipe, compact, t<strong>en</strong>der; weak odour of bitter<br />

almonds, mild, pleasant flavour.<br />

MICROSCOPY: ellipsoidal spores, smooth, 7.2-8.6 ×<br />

4.6-5.2 µm. Cheilocystidia clavate-obese, oft<strong>en</strong> with<br />

apical app<strong>en</strong>dage.<br />

HABITAT: grows <strong>in</strong> meadows and <strong>in</strong> pastures or <strong>in</strong><br />

sparse, grassy conifer woods; first appears <strong>in</strong> late spr<strong>in</strong>g,<br />

and th<strong>en</strong> fruits <strong>in</strong> autumn; <strong>in</strong>frequ<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - A large mushroom which morphologically<br />

evokes the better-known and more common A. arv<strong>en</strong>sis<br />

Schaeff. : Fr. from which, however, it differs ma<strong>in</strong>ly <strong>in</strong> its<br />

larger size, stipe base with a squashed bulb, its coarse<br />

irregular cog-like pattern on the surface just under the<br />

annulus and for its slightly smaller spores.<br />

129


CAP 50-100 mm, <strong>in</strong>itially hemispheric or campanulate,<br />

th<strong>en</strong> convex or a little flatt<strong>en</strong>ed, sometimes umbonate,<br />

with the edges convoluted, th<strong>en</strong> straight, the cap cover<strong>in</strong>g<br />

brown-ochre-ish, more or less reddish, dissociated outside<br />

disc <strong>in</strong> fibrillated scales on lighter background.<br />

GILLS free, crowded, close, grey<strong>in</strong>g-brownish, h<strong>in</strong>t of<br />

p<strong>in</strong>k, ev<strong>en</strong>tually brown dark, with the sterile surface,<br />

more or less pale.<br />

STIPE 60-150 × 7-15 mm, cyl<strong>in</strong>drical, sometimes a little<br />

b<strong>en</strong>t, with bulbous base, firm th<strong>en</strong> fistular, <strong>in</strong>itially white<br />

th<strong>en</strong> grey<strong>in</strong>g, bear<strong>in</strong>g f<strong>in</strong>e flakes or scales under the<br />

annulus. Annulus flar<strong>in</strong>g, simple, f<strong>in</strong>e, the upper part<br />

whitish, the lower concoloured with the cap, sometimes<br />

evanesc<strong>en</strong>t.<br />

FLESH white, to gill edge turn<strong>in</strong>g to fairly <strong>in</strong>t<strong>en</strong>se blood<br />

red, with a sour odour and sweetish flavour. Cross<br />

reaction with Schäffer’s reag<strong>en</strong>t, negative.<br />

130<br />

Agaricus silvaticus Schaeff. : Fr.<br />

MICROSCOPY: spore from oval to ovoid-ellipsoidal,<br />

monoguttulate, 5.4-6 × 3.6-4 µm. clavate tetrasporic<br />

basidia. Cheilocystidia very numerous, from clavate to<br />

mostly clavate, with brownish cont<strong>en</strong>t. Brown-purple<br />

spores.<br />

HABITAT: isolated or gregarious, <strong>in</strong> hardwood and<br />

coniferous areas; summer-autumn.<br />

EDIBILITY: edible<br />

NOTE - A. silvaticus belongs to a group of species<br />

characterised by their slightly redd<strong>en</strong><strong>in</strong>g flesh towards<br />

their gill edges and by their predom<strong>in</strong>antly woodland<br />

habitat. It is dist<strong>in</strong>guishable from other, similar species by<br />

the colour, shape and ornam<strong>en</strong>tation of its cap, its flesh,<br />

which strongly redd<strong>en</strong>s towards the gill edge and by its<br />

pleasant odour. Accord<strong>in</strong>g to several authors, A. silvaticus<br />

is a very variable, collective species,, and <strong>in</strong>cludes, among<br />

others, A. haemorrhoidarius and A. langei.


CAP 50-90 mm, ovoid or hemispheric, th<strong>en</strong> convex-flat,<br />

with the edges convoluted, th<strong>en</strong> straight and wavy, white<br />

cap cover<strong>in</strong>g, whitish cream, hairless, fibrillated, yellow<br />

on rubb<strong>in</strong>g.<br />

GILLS free, fairly crowded, pale at the extremes, with a<br />

slight reddish shade, f<strong>in</strong>ally brown dark, with pale sterile<br />

surface.<br />

STIPE 60-90 × 10-15 mm, cyl<strong>in</strong>drical, wid<strong>en</strong>ed at base,<br />

fistular, white, silky under the annulus, oft<strong>en</strong> lightly p<strong>in</strong>k<br />

th<strong>en</strong> black<strong>en</strong>ed above the annulus, yellowed by rubb<strong>in</strong>g.<br />

Annulus flar<strong>in</strong>g, simple, broad, white, upper part smooth,<br />

lower part with a flaky yellow bloom towards the edges .<br />

FLESH white, p<strong>in</strong>k or reddish wh<strong>en</strong> exposed to air, with<br />

odour of anise and sour flavour. Cross reaction with<br />

Schäffer’s reag<strong>en</strong>t, positive.<br />

MICROSCOPY: spore oval with one or two guttules,<br />

(5.4) 5.8-6.6 × 3.8-4.2 (4.4) µm. clavate basidia,<br />

tetrasporic. Cheilocystidia subglobular, obpiriform,<br />

Agaricus silvicola (Vittad<strong>in</strong>i) Saccardo<br />

ellipsoidal, ev<strong>en</strong> <strong>in</strong> cheilocat<strong>en</strong>ule, with brownish cont<strong>en</strong>t.<br />

Spores purplish-brown <strong>in</strong> mass.<br />

HABITAT: gregarious, <strong>in</strong> large groups, <strong>in</strong> conifer woods.<br />

Summer to autumn, fairly frequ<strong>en</strong>t and common.<br />

EDIBILITY: edible<br />

NOTE - A. sylvicola belongs to a group of species which<br />

also <strong>in</strong>cludes A. essettei, A. t<strong>en</strong>uivolvatus and A.<br />

macrocarpus, where one can oft<strong>en</strong> f<strong>in</strong>d "family<br />

resemblances" betwe<strong>en</strong> one species and another. The<br />

differ<strong>en</strong>ces betwe<strong>en</strong> them lie <strong>in</strong> characteristics such as<br />

size, degree of robustness, developm<strong>en</strong>t of a universal veil<br />

and spore size, but <strong>in</strong> the abs<strong>en</strong>ce of reliable studies on<br />

ph<strong>en</strong>otypic variability such dist<strong>in</strong>ctions are only relatively<br />

valid. For example, A. syilvicola, of medium size and<br />

typically sl<strong>en</strong>der, has a stipe with a bulbous and welldef<strong>in</strong>ed<br />

base as, <strong>in</strong>deed have A. macrocarpus and A.<br />

essettei, but it has the smallest spore size of the group.<br />

131


132<br />

Agaricus ur<strong>in</strong>asc<strong>en</strong>s var. ur<strong>in</strong>asc<strong>en</strong>s<br />

(Jul. Schäff. & F.H. Möller) S<strong>in</strong>ger<br />

[= A. macrosporus (Jul. Schäff. & F.H. Möller) Pilát; A. alberti Bon;<br />

A. stram<strong>in</strong>eus (Jul. Schäff. & F.H. Möller) S<strong>in</strong>ger]<br />

CAP 100-200 mm (sometimes up to 350-400 mm),<br />

fleshy, hemispheric or campanulate, th<strong>en</strong> convex oft<strong>en</strong><br />

with flatt<strong>en</strong>ed c<strong>en</strong>tre, f<strong>in</strong>ally flat; curv<strong>in</strong>g edge at the<br />

extremes; white cap cover<strong>in</strong>g, alutaceous or ochre-ish,<br />

usually dissociated outside disc, adpressed or ev<strong>en</strong> clearly<br />

cracked scales.<br />

GILLS free, crowded, close, light at the extremes, th<strong>en</strong><br />

flesh coloured, f<strong>in</strong>ally brown-blackish with light surface.<br />

STIPE 50-100 × 25-35 mm, usually short and thick,<br />

frequ<strong>en</strong>tly with po<strong>in</strong>ted root<strong>in</strong>g base, but oft<strong>en</strong> elongated,<br />

tight, medullar or ev<strong>en</strong> a little hollow, white or whitish,<br />

completely floccul<strong>en</strong>t-scaly under the annulus; annulus<br />

flar<strong>in</strong>g, broad, smooth above, irregularly serrated to edges<br />

on the lower face and floccul<strong>en</strong>t-scaly elsewhere, white.<br />

FLESH firm white, flesh coloured on stem to gill edge.<br />

Odour of bitter almonds wh<strong>en</strong> fresh, th<strong>en</strong> of mouldy straw<br />

or ur<strong>in</strong>e.<br />

MICROSCOPY: spores ovoid-ellipsoidal, multiguttulate,<br />

8.5-12 × 5.5-6.5 µm. Tetrasporophyte basidia, clavate.<br />

Cheilocystidia very numerous, mostly clavate. Spores<br />

brown-blackish.<br />

HABITAT: gregarious or <strong>in</strong> “witches’ circles” <strong>in</strong><br />

meadows and hilly pastures and mounta<strong>in</strong>s, at high<br />

altitude, rarely <strong>in</strong> woods; start of summer-autumn.<br />

EDIBILITY: edible<br />

NOTE - A. excell<strong>en</strong>s (F.H. Møller) F.H. Møller and A.<br />

stram<strong>in</strong>eus (Jul. Schäff. & F.H. Møller) S<strong>in</strong>ger, were<br />

orig<strong>in</strong>ally recorded as two dist<strong>in</strong>ct species, vary<strong>in</strong>g only<br />

<strong>in</strong> stipe l<strong>en</strong>gth and the straw yellow colour of the surface<br />

respectively. They are now unanimously considered as<br />

varieties of A. ur<strong>in</strong>asc<strong>en</strong>s.


CAP 80-150 mm, from hemispheric to convex, sometimes<br />

conical typically flatt<strong>en</strong>ed at tip, f<strong>in</strong>ally flat; convoluted<br />

edges, th<strong>en</strong> curv<strong>in</strong>g towards the bottom, dist<strong>en</strong>ds acutely<br />

late on, with partial remnants of veil; white colour,<br />

smooth and hairless, rarely lightly scaled, sometimes<br />

brown <strong>in</strong> the c<strong>en</strong>tre, <strong>in</strong>t<strong>en</strong>se chrome yellow on surface<br />

after m<strong>in</strong>imal contact or rubb<strong>in</strong>g.<br />

GILLS free, close, quite crowded, with lamellule; <strong>in</strong>itially<br />

whitish, th<strong>en</strong> p<strong>in</strong>k, p<strong>in</strong>k becom<strong>in</strong>g darker until chocolate<br />

brown; sterile gill edge.<br />

STIPE:50-150 × 8-25 mm, slim and cyl<strong>in</strong>drical, oft<strong>en</strong><br />

curv<strong>in</strong>g, with t<strong>en</strong>d<strong>en</strong>cy to broad<strong>en</strong> at base form<strong>in</strong>g a<br />

roundish and sometimes non-marg<strong>in</strong>ated bulb, up to 35<br />

mm <strong>in</strong> width; white, yellow<strong>in</strong>g if touched or upset; clear<br />

and broad annulus, fairly thick, separates late from edges<br />

of cap, flar<strong>in</strong>g, sometimes appears dissociated from teeth<br />

<strong>in</strong> the lower face, yellow<strong>in</strong>g if touched.<br />

FLESH whitish, sta<strong>in</strong>ed chrome yellow at base of stipe to<br />

gill edge. Odour characteristic of ph<strong>en</strong>ol or <strong>in</strong>k.<br />

Agaricus xanthodermus G<strong>en</strong>evier<br />

MICROSCOPY: spore ovoid, dim<strong>en</strong>sions 5-6.5 × 3.5-4<br />

µm; spores brown with violet shades.<br />

HABITAT: grassy areas, parks, roadsides, meadows,<br />

under trees. Summer to late autumn.<br />

EDIBILITY: toxic<br />

NOTE - May cause gastro<strong>in</strong>test<strong>in</strong>al disturbances. The<br />

clear yellow<strong>in</strong>g of the flesh and <strong>in</strong>ky or ph<strong>en</strong>ol odour are<br />

important features clearly dist<strong>in</strong>guish<strong>in</strong>g it from other<br />

Agaricus species of the arv<strong>en</strong>ses (e.g. A. arv<strong>en</strong>sis, A.<br />

essettei). A. campestris can also be similar, but has<br />

slightly red flesh near gill edge. A. xanthodermus due to<br />

the variability <strong>in</strong> the appearance of its cap cover<strong>in</strong>g,<br />

should be dist<strong>in</strong>guished from the follow<strong>in</strong>g varieties: var.<br />

griseus, from its scaly grey ochre-ish cap, var. lepiotoides,<br />

from its cracked cap with large grey-brown scales. A.<br />

praeclaresquamosus has a cap covered with conc<strong>en</strong>tric<br />

dark grey scales, while its c<strong>en</strong>tre is of a blackish colour.<br />

133


CAP up until 150 mm, from hemispheric to convex, th<strong>en</strong><br />

almost flat, sometimes fairly umbonate, smooth or more<br />

oft<strong>en</strong> m<strong>in</strong>utely corrugated surface, dry and t<strong>en</strong>ds to crack<br />

coarsely <strong>in</strong> dry weather or becomes slightly greasy <strong>in</strong> wet<br />

weather; colour white cream, chamois, breadcrust, darker<br />

<strong>in</strong> the c<strong>en</strong>tre, sometimes, uniformly dark brown especially<br />

<strong>in</strong> smaller specim<strong>en</strong>s.<br />

GILLS adnate or just start<strong>in</strong>g to form a tooth, curved,<br />

very tall (up to 13 mm) and crowded, with numerous<br />

lamellule; from milk white to grey-ochre-ish, f<strong>in</strong>ally<br />

tobacco colour at spore maturation.<br />

STIPE full, dim<strong>en</strong>sions extremely variable <strong>in</strong> both l<strong>en</strong>gth<br />

and diameter dep<strong>en</strong>d<strong>in</strong>g on grow<strong>in</strong>g conditions: oft<strong>en</strong><br />

thick and short, more oft<strong>en</strong> f<strong>in</strong>e and slim, longer than<br />

diameter of cap, supple, curv<strong>in</strong>g, white th<strong>en</strong> ochrebrownish.<br />

Surface smooth or fibrillated l<strong>en</strong>gthwise<br />

sometimes f<strong>in</strong>ely scaled <strong>in</strong> dry weather. Annulus high,<br />

broad, membranous, persist<strong>en</strong>t, white and th<strong>en</strong> brown<br />

tobacco due to deposition of spores.<br />

134<br />

Agrocybe aegerita (Briganti) Fayod<br />

[= Agrocybe cyl<strong>in</strong>dracea (De Cand. : Fr.) Maire]<br />

FLESH white, a little brown at base of stipe <strong>in</strong> mature<br />

examples, t<strong>en</strong>acious, elastic. Odour characteristic and<br />

<strong>in</strong>def<strong>in</strong>able, acidic, like w<strong>in</strong>e.<br />

MICROSCOPY: ellipsoidal spores, light brown under<br />

microscope, dim<strong>en</strong>sions 8.4-9.5 × 5.0-6.0 µm;<br />

tetrasporophyte basidia. Brown spores.<br />

HABITAT: <strong>in</strong> numerous groups, cespitose, on live or<br />

dead trunks of broad-leaved trees, with prefer<strong>en</strong>ce for<br />

Populus, Ulmus, Acer. Fruits several times a year. From<br />

spr<strong>in</strong>g to late autumn.<br />

EDIBILITY: edible<br />

NOTE - This unmistakable mushroom is common to<br />

pla<strong>in</strong>s and flatlands, is much sought after and is safe and<br />

very good to eat. Wh<strong>en</strong> giv<strong>en</strong> the right substrate it grows<br />

very well and is a commonly sold species. It, however,<br />

rapidly kills any plant or tree which hosts it, and will<br />

cont<strong>in</strong>ue to grow on the dead tree for many years<br />

afterwards.


CAP 80-120 (180) mm, <strong>in</strong>itially hemispheric, th<strong>en</strong><br />

convex, ev<strong>en</strong>tually flat-dist<strong>en</strong>ded, hairless, occasionally<br />

bear<strong>in</strong>g patches of membrane from veil, f<strong>in</strong>ely striated at<br />

hem; vivid orange colour, a little lighter at edges.<br />

GILLS free, crowded, a little v<strong>en</strong>tricular; uniformly<br />

chrome-yellow colour.<br />

STIPE 80-140 (200) × 18-25 (35) mm; subcyl<strong>in</strong>drical,<br />

att<strong>en</strong>uated at tip, normally straight, hairless; concolour<br />

with gills or of lighter tones; fairly hard and fibrous, fullmedulla,<br />

th<strong>en</strong> fistular. Base area covered with a wide<br />

VOLVA SACK, att<strong>en</strong>uated at base, free and lac<strong>in</strong>iate at<br />

edge, white, soft consist<strong>en</strong>cy, but fairly t<strong>en</strong>acious, thick<br />

up to 3 mm.<br />

ANNULUS membranous, positioned above median zone;<br />

long and d<strong>en</strong>sely striated; yellow.<br />

FLESH abundant and compact on cap, more granularfibrous<br />

on stipe; white or lightly yellow<strong>in</strong>g, more yellow<br />

<strong>in</strong> peripheral area. Little or no significant odour and<br />

pleasant taste.<br />

Amanita caesarea (Scop. : Fr.) Persoon<br />

MICROSCOPY: spore from suboval to fairly regularly<br />

ellipsoidal, 9.4-11 × 6.2-6.8 µm; not amyloid.<br />

HABITAT: loves temperate climates and fruits <strong>in</strong><br />

hardwood areas not rare ev<strong>en</strong> though not widespread.<br />

EDIBILITY: edible<br />

NOTE - Popularly known as Ovolo Buono (the tasty<br />

button), this is certa<strong>in</strong>ly one of the most popular edible<br />

species; appreciated s<strong>in</strong>ce Roman times. It has rec<strong>en</strong>tly<br />

be<strong>en</strong> subjected to unrestricted gather<strong>in</strong>g and moreover,<br />

this has oft<strong>en</strong> <strong>in</strong>cluded specim<strong>en</strong>s which are still closed.<br />

Because of this, <strong>in</strong> several areas A.Caesarea is <strong>in</strong> serious<br />

danger of ext<strong>in</strong>ction. In order to <strong>en</strong>sure its cont<strong>in</strong>ued<br />

ability to sporulate, the law govern<strong>in</strong>g the collection of<br />

epigeal fungi <strong>in</strong> Italy prohibits the collection of these<br />

<strong>mushrooms</strong> dur<strong>in</strong>g their button stage. This restriction can<br />

also be considered a safety measure because it prev<strong>en</strong>ts<br />

confusion with button <strong>mushrooms</strong> of the (very similar at<br />

this stage) deadly Amanita (see A. phalloides and similar<br />

species).<br />

135


CAP 50-90 mm, hemispheric th<strong>en</strong> flat-convex, bear<strong>in</strong>g<br />

fairly weak pyramidal warts. cuticle completely separable,<br />

viscid th<strong>en</strong> dry, smooth, bright, whitish th<strong>en</strong> with gre<strong>en</strong><br />

t<strong>in</strong>ges; smooth edges, display<strong>in</strong>g hang<strong>in</strong>g remnants of<br />

veil.<br />

GILLS sub-free, slightly crowded, whitish with gre<strong>en</strong><br />

shades, with floccose surface.<br />

STIPE 90-120 × 15-30 mm, cyl<strong>in</strong>drical, with bulbousroot<strong>in</strong>g<br />

base, white, sometimes h<strong>in</strong>t of gre<strong>en</strong>, bear<strong>in</strong>g<br />

small sections of more or less erect warts. Annulus:<br />

p<strong>en</strong>dant, membranous, persist<strong>en</strong>t, white, striated, with the<br />

edge bear<strong>in</strong>g small flakes.<br />

FLESH hard white, h<strong>in</strong>ts of gre<strong>en</strong>. Fairly strong,<br />

unpleasant odour and flavour.<br />

136<br />

Amanita ech<strong>in</strong>ocephala (Vittad.) Quél.<br />

MICROSCOPY: spore 10-11 × 7-8 µm, ellipsoidal,<br />

smooth, hyal<strong>in</strong>e, amyloid. basidia 45-60 × 11-13 µm,<br />

tightly clavate, tetrasporic, with jo<strong>in</strong>ts at h<strong>in</strong>ge.<br />

HABITAT: solitary or gregarious, under wide leaved<br />

trees, ma<strong>in</strong>ly beech and oak. Summer-autumn.<br />

EDIBILITY: edible<br />

NOTE - This species is characterised by its whitish<br />

colour, with gre<strong>en</strong>ish t<strong>in</strong>ges here and there, the small,<br />

po<strong>in</strong>ted warts which confer an ech<strong>in</strong>ulate appearance to<br />

the cap (h<strong>en</strong>ce the name), and its membraneous annulus<br />

and bulbous root<strong>in</strong>g stipe.


CAP 80-120 mm, hemispheric th<strong>en</strong> convex, ev<strong>en</strong>tually<br />

flat; smooth edges. Viscous cuticle <strong>in</strong> wet weather, greybrownish<br />

or lead-grey, bear<strong>in</strong>g floury plates of greybrown<br />

or dirty white veil.<br />

GILLS free, crowded, v<strong>en</strong>tricular, white, sometimes<br />

shaded grey.<br />

STIPE 100-160 × 15-30 mm, robust, cyl<strong>in</strong>drical,<br />

sometimes att<strong>en</strong>uated at tip, very fixed <strong>in</strong> ground, straight,<br />

full and d<strong>en</strong>se, white-grey<strong>in</strong>g. VOLVA whitish,<br />

dissociated <strong>in</strong>to plates at the base of the stipe, evanesc<strong>en</strong>t<br />

on cap, which usually appears bare.<br />

ANNULUS broad and persist<strong>en</strong>t, striated on upper part,<br />

white-grey<strong>in</strong>g.<br />

FLESH firm and compact on cap, fibrous on stipe, whitegrey<strong>in</strong>g,<br />

a little redd<strong>en</strong><strong>in</strong>g-brown<strong>in</strong>g. Root-like odour,<br />

similar flavour.<br />

MICROSCOPY: spore 8.5-9.0 × 5.5-7.5 µm, ovoid or<br />

mostly ellipsoidal, smooth, hyal<strong>in</strong>e, amyloid. basidia 30-<br />

Amanita excelsa var. excelsa (Fr. : Fr.) P. Kumm.<br />

50 × 9.5-11 µm, tetrasporic, tightly clavate, without jo<strong>in</strong>ts<br />

at h<strong>in</strong>ge.<br />

HABITAT: s<strong>in</strong>gle or <strong>in</strong> small groups, <strong>in</strong> hardwood and<br />

coniferous areas. Spr<strong>in</strong>g-autumn.<br />

EDIBILITY: edible<br />

NOTE - the separation of A. excelsa var. excelsa from A.<br />

excelsa var. spissa (Fr.) Neville & Poumarat [<strong>in</strong> this<br />

series, A. spissa (Fr.) P. Kumm.] has caused gallons of <strong>in</strong>k<br />

to be spilt, s<strong>in</strong>ce these are two extremely similar species<br />

whose differ<strong>en</strong>tiat<strong>in</strong>g characteristics oft<strong>en</strong> "cross over". A.<br />

spissa typically has a more robust, “boletoid” form, an<br />

obese-clavate stipe, a veil that breaks down <strong>in</strong>to powdery<br />

plates and adheres to the cap, while A. excelsa is more<br />

sl<strong>en</strong>der (h<strong>en</strong>ce its name) has a nearly cyl<strong>in</strong>drical root<strong>in</strong>g<br />

stipe which holds tightly to the ground and a volva that<br />

dissociates <strong>in</strong>to fairly large flaps, which do not adhere to<br />

the cap.<br />

137


CAP 50-70 (100) mm, hemispheric-glandiform, th<strong>en</strong><br />

convex, only dist<strong>en</strong>ded late on, hairless, regularly bear<strong>in</strong>g<br />

white membranous plates, residues of veil; warm to pale<br />

yellow, primrose yellow, lighter at edge which is f<strong>in</strong>ely<br />

striated.<br />

GILLS FROM free to subfree, v<strong>en</strong>tricular, crowded and<br />

th<strong>in</strong>; white.<br />

STIPE 55-85 × 10-20 mm, progressively att<strong>en</strong>uated at tip,<br />

bulbous-napiform at base where it is covered by a<br />

membranous, f<strong>in</strong>e, adher<strong>en</strong>t VOLVA normally clear-cut<br />

at edge, sometimes also dissociated <strong>in</strong> r<strong>in</strong>gs that persist <strong>in</strong><br />

the lower part of the stipe; white, hairless, full, fistular at<br />

base.<br />

ANNULUS positioned above the medial zone, very f<strong>in</strong>e,<br />

soon becom<strong>in</strong>g dissociated-evanesc<strong>en</strong>t, slightly persist<strong>en</strong>t,<br />

sometimes completely abs<strong>en</strong>t <strong>in</strong> adult examples.<br />

FLESH t<strong>en</strong>der, white, just yellowish under the cuticle;<br />

almost odourless, pleasant taste.<br />

138<br />

Amanita junquillea Quélet<br />

MICROSCOPIA: spore from subglobose to short<br />

ellipsoidal, 9.5-11 × 7.5-8.5 µm; not amyloid.<br />

HABITAT: early, from April to May, <strong>in</strong> hilly woods, a<br />

little later <strong>in</strong> June, <strong>in</strong> mounta<strong>in</strong>s. Common and widespread<br />

both <strong>in</strong> hardwoods and coniferous areas.<br />

EDIBILITY: suspect<br />

NOTE - Thanks to its slop<strong>in</strong>g shape and its decidedly<br />

t<strong>en</strong>der consist<strong>en</strong>cy, A. junquillea rem<strong>in</strong>ds one of the<br />

Amanitopsis, from which it can be dist<strong>in</strong>guished by its<br />

annulus, which is actually rather ephemeral. Its edibility is<br />

a controversial topic. It must always be cooked, but ev<strong>en</strong><br />

th<strong>en</strong> is not tolerated well by all <strong>in</strong>dividuals. Among<br />

related species one should be careful of the decoloured<br />

form of the toxic A. panther<strong>in</strong>a (see below), which is<br />

morphologically similar, but has a brown cap.


CAP 100-150 (250) mm <strong>in</strong>itially hemispheric th<strong>en</strong><br />

convex, ev<strong>en</strong>tually flat-dist<strong>en</strong>ded, with the c<strong>en</strong>tre oft<strong>en</strong><br />

depressed, with smooth cuticle, sticky <strong>in</strong> humid weather,<br />

almost always covered with white pyramidal warts,<br />

raised, conc<strong>en</strong>tric, residues of the veil, whitish, f<strong>in</strong>ely<br />

striated rim, reddish-orange, red, dark red.<br />

GILLS free, d<strong>en</strong>se, v<strong>en</strong>tricular, pure white or slightly<br />

yellow.<br />

STIPE 80-140 (200) × 10-20 (30) mm; cyl<strong>in</strong>drical,<br />

att<strong>en</strong>uated at the apex, straight, hairless or slightly<br />

floccul<strong>en</strong>t, white, rather tough and fibrous, th<strong>en</strong> fistular<br />

and ev<strong>en</strong>tually hollow. The basal zone wid<strong>en</strong>s <strong>in</strong>to a bulb<br />

covered with a th<strong>in</strong> VOLVA, dissociated with conc<strong>en</strong>tric<br />

whitish warts.<br />

ANNULUS membranous, large, located <strong>in</strong> the upper<br />

middle of the stem, striated on the top, rema<strong>in</strong>s of the veil<br />

found at the edge.<br />

FLESH firm <strong>in</strong> the cap, more granular-fibrous on the<br />

stipe; white and faded on the cuticle immediately below.<br />

No odour and a sweet, pleasant taste.<br />

Amanita muscaria (L. : Fr.) Hooker<br />

MICROSCOPY: spore subovoid and roughly ellipsoidal,<br />

9.0-11.2 × 6.5-7.5 µm; not amyloid; white <strong>in</strong> mass.<br />

HABITAT: <strong>in</strong> mounta<strong>in</strong>s, acidic soil, with hardwood and<br />

coniferous trees. Summer-autumn. Widespread.<br />

EDIBILITY: toxic<br />

NOTE - This is without doubt the mushroom which has<br />

most stimulated the imag<strong>in</strong>ations of illustrators over the<br />

years. In fact there are countless repres<strong>en</strong>tations of this<br />

spl<strong>en</strong>did species, both realistic and less so, which are<br />

employed wh<strong>en</strong> depict<strong>in</strong>g the toadstools of mythical and<br />

fantasy worlds. In popular belief, A. muscaria is oft<strong>en</strong><br />

confused with the lethal A. phalloides, a fact which br<strong>in</strong>gs<br />

no shortage of consequ<strong>en</strong>t danger to the <strong>in</strong>expert. From a<br />

taxonomic po<strong>in</strong>t of view, we feel it appropriate to note a<br />

variant with a more brittle volva and, rarely, warts on the<br />

cap: the form aureola.<br />

139


CAP 70-130 (200) mm, hemispherical, th<strong>en</strong> convex,<br />

convex-flatt<strong>en</strong>ed for a long time, ev<strong>en</strong> revolute <strong>in</strong> old age;<br />

edge quite oft<strong>en</strong> jo<strong>in</strong>ed, non-striated, exceed<strong>in</strong>gly<br />

app<strong>en</strong>dicular; silky-sh<strong>in</strong><strong>in</strong>g, white, ivory, cream and ochre<br />

with weak shade <strong>in</strong> the c<strong>en</strong>tre, hairless, sometimes with a<br />

few dissociated strips, remnants of veil.<br />

GILLS free, d<strong>en</strong>se and th<strong>in</strong>, white, creamy p<strong>in</strong>k shade <strong>in</strong><br />

adults, m<strong>in</strong>utely floccul<strong>en</strong>t edge, alternat<strong>in</strong>g with<br />

truncated lamellule.<br />

STIPE 80-170 × 15-25 (35) mm, robust, yet sl<strong>en</strong>der,<br />

gradually expand<strong>in</strong>g towards the sub-bulbous base,<br />

root<strong>in</strong>g at the base, full, firm, white, with concolour, or<br />

coloured, and highly transi<strong>en</strong>t floccules.<br />

VOLVA membranous, thick, fairly high, sheath<strong>in</strong>g at the<br />

base, free at edge; ochre-ish externally, ochre-ish-pale<br />

orange, light clay-coloured, whitish <strong>in</strong>side.<br />

ANNULUS oft<strong>en</strong> situated fairly very high, typically softt<strong>en</strong>der<br />

consist<strong>en</strong>cy (rem<strong>in</strong>isc<strong>en</strong>t of whipped cream),<br />

dissociated-evanesc<strong>en</strong>t, white, striated top.<br />

140<br />

Amanita ovoidea (Bull. : Fr.) L<strong>in</strong>k<br />

FLESH highly abundant, soft<strong>en</strong>ed, white on cap, more<br />

compact on stipe, with ochre-ish shades; salty odour,<br />

fairly pleasant, sweet flavour.<br />

MICROSCOPY: spore l<strong>en</strong>gthwise ellipsoidal-ovoid,<br />

smooth, 9.5-11 × 5.5-7 µm; amyloid.<br />

HABITAT: regarded as a thermophilic species, but also<br />

spreads to subalp<strong>in</strong>e zones, although more rarely. In oak<br />

and coastal p<strong>in</strong>e woods it is very abundant and under<br />

broad leaved trees <strong>in</strong> woods <strong>in</strong> the hills it is rare.<br />

EDIBILITY: edible<br />

NOTE - the size, colours and the downy-t<strong>en</strong>der<br />

consist<strong>en</strong>cy of the annulus of this mushroom constitute<br />

excell<strong>en</strong>t diagnostic <strong>elem<strong>en</strong>ts</strong> which should hopefully<br />

avoid any confusion betwe<strong>en</strong> this species and the similar<br />

lethal white Amanita varieties. In literature we can oft<strong>en</strong><br />

f<strong>in</strong>d it compared to A. proxima, which has a more<br />

colourful (ev<strong>en</strong> tawny) volva, but which may also be<br />

toxic; therefore we recomm<strong>en</strong>d caution be tak<strong>en</strong> <strong>in</strong> its<br />

cul<strong>in</strong>ary use.


CAP 80-100 (150) mm, <strong>in</strong>itially hemispheric, th<strong>en</strong><br />

convex, ev<strong>en</strong>tually flat-dist<strong>en</strong>ded sometimes depressed <strong>in</strong><br />

the c<strong>en</strong>tre, smooth, covered with m<strong>in</strong>ute pure white floury<br />

warts, oft<strong>en</strong> conc<strong>en</strong>tric, remnants of veil; f<strong>in</strong>ely striated to<br />

edge (but smooth <strong>in</strong> var. abietum, which is heavier);<br />

brown-ochre, brown, brown dark.<br />

GILLS free to just non-marg<strong>in</strong>ated, crowded, slightly<br />

v<strong>en</strong>tricular; pure white.<br />

STIPE 10-25 (30) × 80-150 (180) mm; cyl<strong>in</strong>drical,<br />

att<strong>en</strong>uated at tip, straight, hairless; white; firm fibrous,<br />

th<strong>en</strong> fistular and f<strong>in</strong>ally hollow, with base wid<strong>en</strong><strong>in</strong>g <strong>in</strong>to a<br />

broad bulb. Basal zone is covered <strong>in</strong> an adher<strong>en</strong>t VOLVA<br />

and dissociated from annulus, white.<br />

ANNULUS more or less broad, typically low on stipe;<br />

white and striated on the upper part.<br />

FLESH firm on cap, more fibrous on stipe; white. Odour<br />

almost nonexist<strong>en</strong>t or slightly earthy, sweet flavour.<br />

MICROSCOPY: ellipsoidal spores, 9.5-11.5 × 6.5-7.5<br />

µm; not amyloid; white <strong>in</strong> mass.<br />

Amanita panther<strong>in</strong>a (De Cand. : Fr.) Krombholz<br />

HABITAT: <strong>in</strong> mounta<strong>in</strong>s, <strong>in</strong> coniferous and hardwood<br />

areas, oft<strong>en</strong> around the edges of woods. Summer-autumn.<br />

EDIBILITY: toxic<br />

NOTE – Here is another toxic Amanita, whose<br />

dangerousness is without a doubt greater than that of A.<br />

muscaria, of which, at first sight, this might be considered<br />

a brown variant. In reality, A. panther<strong>in</strong>a has an evid<strong>en</strong>t<br />

and sturdy volva and its annulus is dist<strong>in</strong>ctly lower. A.<br />

junquillea, whose edibility is shrouded by serious doubts,<br />

has a similar shape, but its colour is a strong cowslip<br />

yellow. A. franchetii (which is edible cooked) has<br />

colourful forms and these could appear similar were it not<br />

for its yellowish veil, while A. rubesc<strong>en</strong>s (also edible<br />

wh<strong>en</strong> cooked) is of a brown-reddish colour and its flesh<br />

can easily be se<strong>en</strong> to redd<strong>en</strong> wh<strong>en</strong> exposed to the air or <strong>in</strong><br />

the tunnels created by larvae.<br />

141


CAP 60-120 (150) mm, hemispheric, th<strong>en</strong> convex, f<strong>in</strong>ally<br />

dist<strong>en</strong>ded radially from crowded and f<strong>in</strong>e fibrils, oft<strong>en</strong><br />

covered with white membranous strips, residues of veil;<br />

gre<strong>en</strong>ish, gre<strong>en</strong>-olivish, yellow-brown-gre<strong>en</strong>ish, lighter at<br />

edge which is smooth.<br />

GILLS free, v<strong>en</strong>tricular, crowded and th<strong>in</strong>, fairly wide;<br />

white.<br />

STIPE 75-120 (150) × 10-22 mm, progressively<br />

att<strong>en</strong>uated towards apex, typically decorated with yellowolivish<br />

zig-zag bands on a white background; full, th<strong>en</strong><br />

medullar. Bulbous at base where it is covered with a<br />

membranous, fairly f<strong>in</strong>e VOLVA sack, adher<strong>en</strong>t to bulb<br />

but free towards edge where it is usually splits <strong>in</strong>to white<br />

petal shapes.<br />

ANNULUS positioned fairly high, p<strong>en</strong>dant, fairly f<strong>in</strong>e,<br />

white, persist<strong>en</strong>t.<br />

FLESH <strong>in</strong>itially firm soon becom<strong>in</strong>g soft, white, just fa<strong>in</strong>t<br />

gre<strong>en</strong> shades under the cuticle; from odourless to slightly<br />

smelly; older examples smell of putrid water (water from<br />

old flowers); no significant flavour.<br />

142<br />

Amanita phalloides (Vaill. : Fr.) L<strong>in</strong>k<br />

MICROSCOPY: spore from mostly ellipsoidal to<br />

subglobose, 9-11.3 × 7-9 µm; amyloid.<br />

HABITAT: found <strong>in</strong> woods of deciduous trees <strong>in</strong> summer<br />

(rarely <strong>in</strong> conifers?) it seems to prefer oak, chestnut and<br />

beech trees, is also able to grow at high altitudes where it<br />

is regularly associated with hazelnut trees. Very common<br />

and widespread.<br />

EDIBILITY: deadly<br />

NOTE - This mushroom is the primary cause of all deaths<br />

which occur through mushroom poison<strong>in</strong>g. It is<br />

(unbelievably) confused with gre<strong>en</strong> Russule, from which<br />

it differs through a series of primary characteristics: it has<br />

a volva at the base of its stipe, it has an annulus, free gills,<br />

heterog<strong>en</strong>eity betwe<strong>en</strong> cap and stipe, chang<strong>in</strong>g bands of<br />

colour on the stipe, non-chalky flesh. In nature one<br />

<strong>en</strong>counters numerous colour variations, <strong>in</strong>clud<strong>in</strong>g one<br />

which is completely white, the fo. alba.


CAP 80-150 (180) mm, <strong>in</strong>itially hemispheric, th<strong>en</strong><br />

convex, sometimes dist<strong>en</strong>ded, smooth, viscous <strong>in</strong> humid<br />

weather, with m<strong>in</strong>ute remnants of veil <strong>in</strong> the form of<br />

crowded and prom<strong>in</strong><strong>en</strong>t small warts, dirty white, grey<strong>in</strong>g<br />

or sometimes also ochre; with smooth brown, reddish<br />

edges, pal<strong>in</strong>g with age or heavy ra<strong>in</strong>fall with<br />

characteristic v<strong>in</strong>ous patches.<br />

GILLS rounded to stipe, crowded, v<strong>en</strong>tricular and large,<br />

strong; white, sta<strong>in</strong>ed red w<strong>in</strong>e with age or to the touch.<br />

STIPE 12-25 (35) × 90-140 (200) mm; cyl<strong>in</strong>drical,<br />

att<strong>en</strong>uated at tip, normally straight, hairless or sometimes<br />

m<strong>in</strong>utely floccose under the annulus; from whitish to<br />

white p<strong>in</strong>kish and f<strong>in</strong>ally v<strong>in</strong>ous brown; more or less full;<br />

firm th<strong>en</strong> fibrous and fragile. The base wid<strong>en</strong>s <strong>in</strong>to a non<br />

marg<strong>in</strong>ated ovoid bulb covered with an adher<strong>en</strong>t VOLVA,<br />

soon becom<strong>in</strong>g dissociated <strong>in</strong> floccose residues the same<br />

colour as stipe with a t<strong>en</strong>d<strong>en</strong>cy to disperse.<br />

ANNULUS positioned <strong>in</strong> the middle to upper stipe,<br />

membranous, p<strong>en</strong>dant, whitish or p<strong>in</strong>kish, sometimes<br />

ev<strong>en</strong> a little yellow, striated on the upper part.<br />

Amanita rubesc<strong>en</strong>s Pers. : Fr.<br />

FLESH abundant and compact <strong>in</strong> cap more fibrous and<br />

fragile <strong>in</strong> stipe; white th<strong>en</strong> p<strong>in</strong>kish to gill edge; typically<br />

v<strong>in</strong>ous red <strong>in</strong> veiled area, which is almost always visible.<br />

Odour irrelevant, pleasant, slightly salty-sour flavour.<br />

MICROSCOPY: ellipsoidal spores, 7.5-9.6 × 5.6-6.5 µm;<br />

amyloid; white <strong>in</strong> mass<br />

HABITAT: ubiquitous and widespread <strong>in</strong> conifer and<br />

hardwood areas.<br />

EDIBILITY: edible<br />

NOTE - Good to eat; though should be cooked first, as the<br />

flesh conta<strong>in</strong>s thermolabile tox<strong>in</strong>s, and are best used <strong>in</strong><br />

mixes. Confusion with the toxic A. panther<strong>in</strong>a is possible<br />

for the <strong>in</strong>expert; the latter, however, has a very<br />

<strong>in</strong>dividualised volva and always has uniformly white<br />

flesh. The species which it most resembles<br />

morphochromatically is A. franchetii, which has more<br />

uniform flesh and a yellowish veil.<br />

143


CAP (30) 45-70 (95) mm, <strong>in</strong>itially campanulate-parabolic,<br />

th<strong>en</strong> convex, f<strong>in</strong>ally dist<strong>en</strong>ded with broad slightly<br />

emerg<strong>in</strong>g umbo; hairless, rarely with residues of veil <strong>in</strong><br />

shape of large plates, f<strong>in</strong>ely striated to hem; of ash grey,<br />

pearl grey colour, sometimes with a h<strong>in</strong>t of brownish<br />

colour (white <strong>in</strong> var. alba; lead grey <strong>in</strong> var. plumbea),<br />

sometimes h<strong>in</strong>t of ochre <strong>in</strong> disc area.<br />

GILLS free, crowded and th<strong>in</strong>; white, <strong>in</strong>tercalated from<br />

lamellule trunk.<br />

STIPE 65-120 × 10-22 mm, slim, att<strong>en</strong>uated at tip, white,<br />

smooth, or becom<strong>in</strong>g floccul<strong>en</strong>t adnate and coloured;<br />

fully-medullar, f<strong>in</strong>ally fistular.<br />

VOLVA membranous, not very f<strong>in</strong>e but fragile, adher<strong>en</strong>t<br />

<strong>in</strong> basal area, free to hem; from white to whitish.<br />

ANNULUS appar<strong>en</strong>tly abs<strong>en</strong>t (reduced to shreds that<br />

rema<strong>in</strong> at the base of the stipe, <strong>in</strong>side the volva, as <strong>in</strong><br />

other "Amanitopsis” specim<strong>en</strong>s).<br />

FLESH not very abundant, t<strong>en</strong>der, white or whitish; no<br />

particular odour, pleasant flavour.<br />

144<br />

Amanita vag<strong>in</strong>ata (Bull. : Fr.) Vittad<strong>in</strong>i<br />

MICROSCOPY: spore from subglobular to globular, 10-<br />

12.2 × 9.6-11.6 µm; not amyloid.<br />

HABITAT: ubiquitous; found especially <strong>in</strong> hardwood or<br />

coniferous areas, common, from summer to late autumn.<br />

EDIBILITY: edible<br />

NOTE - As is the case for its relatives, this mushroom is<br />

considered an edible delicacy, ideal for fry<strong>in</strong>g (it must be<br />

cooked prior to consumption). The group, A. vag<strong>in</strong>ata is<br />

certa<strong>in</strong>ly the most complex of those <strong>in</strong>side the subg<strong>en</strong>us<br />

Amanitopsis, which <strong>in</strong>cludes many species without<br />

annulus, at least at maturity; and <strong>in</strong> fact, there are many<br />

<strong>en</strong>tities (species, varieties or forms) that are cited <strong>in</strong><br />

literature, with nearly all hav<strong>in</strong>g a greyish colouration <strong>in</strong><br />

common. A. Mairei is a little more stocky and it has no<br />

umbo on its cap; A. nivalis, which is paler and smaller,<br />

can be found on the microsilve Alps. A. lividopallesc<strong>en</strong>s<br />

has more grey tones on its cream-brownish cap. The<br />

varieties plumbea, arg<strong>en</strong>tea, and alba differ only <strong>in</strong> their<br />

colour.


CAP 25-60 (100) mm, hemispheric, th<strong>en</strong> dist<strong>en</strong>ded f<strong>in</strong>ally<br />

flat-umbonate with slight prediscal depression, scattered<br />

with f<strong>in</strong>e erect brownish transi<strong>en</strong>t scales, with f<strong>in</strong>e edge,<br />

<strong>in</strong>itially fr<strong>in</strong>ged with residues of veil, th<strong>en</strong> bare and<br />

slightly striated, becom<strong>in</strong>g undulat<strong>in</strong>g-s<strong>in</strong>uous <strong>in</strong> adults;<br />

variable colour, from yellow<strong>in</strong>g brown to amber, dark<br />

brown, sometimes with olivish h<strong>in</strong>ts rema<strong>in</strong><strong>in</strong>g at the<br />

extremes of the edges, pale, whitish.<br />

GILLS adnate and slightly decurr<strong>en</strong>t l<strong>en</strong>gthwise, fairly<br />

crowded and fairly close; whitish, th<strong>en</strong> weak beige,<br />

f<strong>in</strong>ally bear<strong>in</strong>g brown reddish spots.<br />

STIPE 60-120 (160) × 10-22 (35) mm, cyl<strong>in</strong>drical, oft<strong>en</strong><br />

tapered at base, other times a little dilated, grows<br />

cespitosely, fibrous-woody, full, soon becom<strong>in</strong>g filled<br />

with an evanesc<strong>en</strong>t medulla, exterior is scattered with<br />

floccul<strong>en</strong>t dissociated membrane disorderly arranged<br />

under the annulus; rather transi<strong>en</strong>t, fibrillated at tip; from<br />

cream-flesh coloured to concolour with cap, clearly<br />

brown<strong>in</strong>g at base.<br />

ANNULUS membranous, persist<strong>en</strong>t, striated on lower<br />

face, floccose-cottony at edge; white, sometimes yellow<br />

at extreme edges .<br />

Armillaria mellea (Vahl : Fr.) Kummer<br />

FLESH fairly thick on circumfer<strong>en</strong>ce, whitish, highly<br />

leathery <strong>in</strong> stipe, rather bitter and astr<strong>in</strong>g<strong>en</strong>t to taste,<br />

fungal odour.<br />

MICROSCOPY: spore from ellipsoid to ovoid, smooth,<br />

7-8.6 × 5.4-6 µm; basidia without jo<strong>in</strong>ts on h<strong>in</strong>ge.<br />

HABITAT: parasitic on wood of deciduous trees, oft<strong>en</strong><br />

late, abundant, very common.<br />

EDIBILITY: edible<br />

NOTE - Edible with care (see note to A. ostoyae).<br />

Armillaria tabesc<strong>en</strong>s, which also grows cespitosely on<br />

hardwoods, is very similar but can be recognised by its<br />

lack of a membraneous annulus; A. ostoyae (= A. obdark)<br />

is darker, with persist<strong>en</strong>t erect scales, annulus bordered<br />

with brown and prefers to grow on conifers; A. cepistipes<br />

is more frail and pallid and pallida, fairly hygrophanous;<br />

A. gallica (= A. bulbous, A. lutea) is less cespitose,<br />

usually grows as fairly-isolated specim<strong>en</strong>s, happily on the<br />

ground (on underground woody deposits) and has<br />

residues of veil, as does the border of its annulus, which<br />

are largely yellow.<br />

145


CAP 30-80 (110) mm, hemispheric, th<strong>en</strong> convex or<br />

convex and mostly umbonate, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a b<strong>en</strong>t edge at<br />

the extremes, f<strong>in</strong>ally dist<strong>en</strong>ded with f<strong>in</strong>e peripheral area,<br />

striated <strong>in</strong> maturity, <strong>in</strong>itially fimbriated due to floccose<br />

remnants of veil, which is brown reddish, brown-tawny,<br />

sometimes paler, becom<strong>in</strong>g brown-grey, paler at edge, up<br />

to cream whitish; scattered with erect scales, d<strong>en</strong>ser on<br />

circumfer<strong>en</strong>ce and dark p<strong>in</strong>k <strong>in</strong> colour.<br />

GILLS adnate, th<strong>en</strong> fairly decurr<strong>en</strong>t, b<strong>en</strong>t, not particularly<br />

close, att<strong>en</strong>uated at edge and jo<strong>in</strong>; whitish, pale yellow,<br />

oft<strong>en</strong> with brownish spots on surface, which ev<strong>en</strong>tually<br />

turns brownish.<br />

STIPE 60-140 × 10-22 mm, slim, cyl<strong>in</strong>drical or a little<br />

tapered at base, up to sub bulbous, clustered-cespitose<br />

growth (g<strong>en</strong>erally few connate specim<strong>en</strong>s), striated at tip,<br />

fibrillated-floccose under the annulus creat<strong>in</strong>g a white<br />

fluff, subcoloured near cap or darker at base, t<strong>en</strong>d<strong>en</strong>cy to<br />

take on brown-olive-blackish tones.<br />

146<br />

Armillaria ostoyae (Romagnesi) Her<strong>in</strong>k<br />

[= A. obdark (Schaeffer) Her<strong>in</strong>k]<br />

ANNULUS membranous-cottony, fairly persist<strong>en</strong>t,<br />

striated, white, oft<strong>en</strong> brown at extreme edges.<br />

FLESH fairly consist<strong>en</strong>t on circumfer<strong>en</strong>ce, very f<strong>in</strong>e<br />

elsewhere, fibrous-leathery <strong>in</strong> stipe, firm wh<strong>en</strong> young,<br />

th<strong>en</strong> soft, whitish th<strong>en</strong> suffused with flesh colour.<br />

MICROSCOPY: ellipsoidal spores, sometimes slightly<br />

compressed, smooth, to thick side, 8-10 × 5-6.6 µm.<br />

basidia with jo<strong>in</strong>ts at h<strong>in</strong>ge.<br />

HABITAT: prefers coniferous woods, but a hardwood<br />

form seems to exist; autumn, abundant and widespread.<br />

EDIBILITY: edible<br />

NOTE - For the differ<strong>en</strong>ces from similar species, see the<br />

notes to A. mellea and A. tabesc<strong>en</strong>s. Edible, but as with<br />

the other Armillaria with annuli, a long cook<strong>in</strong>g time and<br />

elim<strong>in</strong>at<strong>in</strong>g the stipe are necessary to avoid fairly<br />

unpleasant gastro-<strong>in</strong>test<strong>in</strong>al poison<strong>in</strong>g.


CAP 30-70 mm, <strong>in</strong>itially campanulate-convex, th<strong>en</strong><br />

dist<strong>en</strong>ded, f<strong>in</strong>ally flat with broad obtuse umbo, sometimes<br />

rather depressed <strong>in</strong> prediscal area, superimposed with<br />

erect fairly persist<strong>en</strong>t scales; edges curv<strong>in</strong>g at the<br />

extremes, f<strong>in</strong>e, dist<strong>en</strong>ded <strong>in</strong> maturity and a little striated;<br />

brown reddish, brown-beige, pal<strong>in</strong>g to cream ochre-ish.<br />

GILLS b<strong>en</strong>t and decurr<strong>en</strong>t, th<strong>in</strong>ned at the front, not very<br />

crowded, close, fairly thick, whitish, th<strong>en</strong> pale-flesh<br />

coloured, brown<strong>in</strong>g on surface <strong>in</strong> maturity.<br />

STIPE 35-70 × 8-15 mm, slim, cyl<strong>in</strong>drical or subfusiform<br />

fairly b<strong>en</strong>t, d<strong>en</strong>sely connate with other examples, white at<br />

tip, whitish flesh with splashes of colour, th<strong>en</strong> decidedly<br />

and ext<strong>en</strong>sively brown<strong>in</strong>g <strong>in</strong> a smooth cont<strong>in</strong>uum away<br />

from darker fibrils; full-medullar, f<strong>in</strong>ally fistular.<br />

ANNULUS nearly abs<strong>en</strong>t or reduced to transi<strong>en</strong>t residues,<br />

coniform, only visible <strong>in</strong> very young examples.<br />

FLESH compact <strong>in</strong> cap, more fibrous <strong>in</strong> stipe, white,<br />

whitish-beige pale; fungal odour, sweet flavour with<br />

slightly bitter aftertaste.<br />

Armillaria tabesc<strong>en</strong>s (Scop.) Emeland<br />

MICROSCOPY: ellipsoidal spores with thick wall, 9-10.2<br />

× 5.4-6.6 µm. basidia without jo<strong>in</strong>ts at h<strong>in</strong>ge.<br />

HABITAT: cespitose, <strong>in</strong> large groups connate, above all<br />

on logs or at the base of oak trees, th<strong>en</strong> spread<strong>in</strong>g to the<br />

ground. Not very widespread but abundant <strong>in</strong> growth<br />

areas.<br />

EDIBILITY: edible<br />

NOTE - the t<strong>en</strong>der consist<strong>en</strong>cy of the flesh, ev<strong>en</strong> the stipe,<br />

comb<strong>in</strong>ed with a “more traditionally fungal” flavour make<br />

this species an excell<strong>en</strong>t and sought after edible<br />

mushroom, doubtlessly superior to the annuli-bear<strong>in</strong>g<br />

Armillaria. It can sometimes seem like a tw<strong>in</strong> of A. mellea<br />

s.l., but the abs<strong>en</strong>ce of a membraneous annulus makes for<br />

a fairly easy dist<strong>in</strong>ction. A. ectypa has no annulus either,<br />

but grows <strong>in</strong> beds of sphagnum moss or <strong>in</strong> mounta<strong>in</strong><br />

bogs; its size br<strong>in</strong>gs to m<strong>in</strong>d the Laccaria.<br />

147


CAP 80-160 (250) mm, fleshy, from hemispheric to<br />

convex-pulv<strong>in</strong>ate; edge curv<strong>in</strong>g at extremes, th<strong>en</strong><br />

regularly dist<strong>en</strong>ded with white evanesc<strong>en</strong>t bloom; matt<br />

cuticle, f<strong>in</strong>ely tom<strong>en</strong>tose, th<strong>en</strong> hairless, not viscous, ev<strong>en</strong><br />

<strong>in</strong> humid weather; fairly dark, g<strong>en</strong>erally brown-blackish,<br />

typically discoloured to brown-ochre yellowish.<br />

TUBES l<strong>en</strong>gth up to 25 mm, non-marg<strong>in</strong>ated-adnate,<br />

whitish and persist<strong>en</strong>t until maturation is <strong>in</strong>cipi<strong>en</strong>t;<br />

gre<strong>en</strong>ish-yellow late on, f<strong>in</strong>ally olive, uniform to gill<br />

edge, very small pores, concolour with tubes.<br />

STIPE 60-130 × 40-85 (110) mm, oft<strong>en</strong> rounded <strong>in</strong> young<br />

examples, th<strong>en</strong> slimmer, v<strong>en</strong>tricular, or ev<strong>en</strong> cyl<strong>in</strong>drical,<br />

sometimes curv<strong>in</strong>g; ochre-ish, brown-ochre-ish, honey<br />

coloured, light hazelnut, towards the upper part (from 1/3<br />

to 2/3) covered with a f<strong>in</strong>e lattice, g<strong>en</strong>erally the same<br />

colour as the sk<strong>in</strong> of the stipe.<br />

FLESH firm and compact wh<strong>en</strong> young and this rema<strong>in</strong>s<br />

<strong>in</strong> adults, later soft; pure white, uniform, uncoloured<br />

under cuticle of cap. Weak but very pleasant odour,<br />

sweet, hazelnut flavour.<br />

148<br />

Boletus aereus Bull. : Fr.<br />

MICROSCOPY: spore fusiform dim<strong>en</strong>sions 13.5-16 ×<br />

4.0-5.0 µm, pale yellow under microscope; olive-brown<br />

<strong>in</strong> mass.<br />

HABITAT: the most thermophilic of porc<strong>in</strong>i <strong>mushrooms</strong>,<br />

it prefers sparse oak or chestnut woods, <strong>in</strong> which it can be<br />

found from summer’s start till the <strong>en</strong>d of autumn, solitary<br />

or gregarious, not very common <strong>in</strong> the north, the species<br />

is fairly widespread <strong>in</strong> southern areas .<br />

EDIBILITY: edible<br />

NOTE - Commonly known as the “Porc<strong>in</strong>o nero”, after<br />

the colouration of its cap. Its particular biological needs<br />

mean that it is widespread particularly <strong>in</strong> southern areas,<br />

but can also be found <strong>in</strong> northern Italy (though not higher<br />

than 800 m above sea level) <strong>in</strong> hotter periods of the year.<br />

Sometimes the dist<strong>in</strong>ction from darker forms of B.<br />

aestivalis can prove chall<strong>en</strong>g<strong>in</strong>g. In that case the colour of<br />

the flesh, pure white only <strong>in</strong> B. aereus, and the<br />

decolouration of the pileic cuticle are determ<strong>in</strong><strong>in</strong>g factors.


CAP 100-250 mm, fleshy, from hemispheric to convex,<br />

f<strong>in</strong>ally pulv<strong>in</strong>ate-flat; cuticle f<strong>in</strong>ely velvety, never<br />

viscous, oft<strong>en</strong> f<strong>in</strong>ely cracked especially at edges or, <strong>in</strong><br />

very dry weather, ev<strong>en</strong>ly tessellated <strong>in</strong> large areolas<br />

which are barely visible b<strong>en</strong>eath the flesh; uniformly pale<br />

brown, coffee, hazelnut, reddish brown, oft<strong>en</strong> also dark<br />

brown.<br />

TUBES up to 30 mm, depressed-adnate, from white milk<br />

to straw yellow, th<strong>en</strong> yellow-gre<strong>en</strong>ish, f<strong>in</strong>ally olivish,<br />

uniform to gill edge; has very small pores, the same<br />

colour as tubes, unchang<strong>in</strong>g to the touch.<br />

STIPE up to 150 × 80 mm, <strong>in</strong>itially obese th<strong>en</strong> slimmer,<br />

cyl<strong>in</strong>drical, oft<strong>en</strong> curv<strong>in</strong>g, rarely v<strong>en</strong>tricular, rounded at<br />

base and sometimes root<strong>in</strong>g a little; bark coloured wh<strong>en</strong><br />

young, with tones which become <strong>in</strong>t<strong>en</strong>sified and match<br />

those of the cap, or a little paler. F<strong>in</strong>e mesh lattice the<br />

same colour as background, which covers the surface of<br />

the stipe right to the base.<br />

Boletus aestivalis (Paulet) Fries<br />

[= Boletus reticulatus auct. non Schaeff.]<br />

FLESH firm and compact <strong>in</strong> young, soon becom<strong>in</strong>g soft<br />

<strong>in</strong> cap and a little str<strong>in</strong>gy <strong>in</strong> stipe, oft<strong>en</strong> eroded by small<br />

larvae; milk white, just brownish under cuticle; peculiar,<br />

<strong>in</strong>t<strong>en</strong>se and sweet odour; sweet, pleasant hazelnut flavour.<br />

MICROSCOPY: ellipsoidal fusiform spores with weak<br />

elevated depression, 12.8-15.1 × 3.8-4.4 µm, pale yellow<br />

under microscope. Olive brown <strong>in</strong> mass.<br />

HABITAT: warm op<strong>en</strong> woody grassland areas, oft<strong>en</strong><br />

associated with Quercus, Fagus, Castanea, but also to<br />

conifers (Picea) from late spr<strong>in</strong>g to early autumn<br />

EDIBILITY: edible<br />

NOTE - This is the “summer porc<strong>in</strong>e” which appears <strong>in</strong><br />

late spr<strong>in</strong>g <strong>in</strong> the clear<strong>in</strong>gs and glades of woodlands. The<br />

characteristics which can help to dist<strong>in</strong>guish it from other<br />

porc<strong>in</strong>e <strong>mushrooms</strong> are: a dry, oft<strong>en</strong> cracked cuticle; a<br />

stipe which is coloured ev<strong>en</strong> <strong>in</strong> young specim<strong>en</strong>s, the<br />

flesh of the cap, which is usually pliable or saggy to the<br />

touch <strong>in</strong> mature examples.<br />

149


CAP 100-250 mm, fleshy, hemispheric th<strong>en</strong> convexpulv<strong>in</strong>ate,<br />

f<strong>in</strong>ally flat; undulat<strong>in</strong>g edge <strong>in</strong> mature<br />

examples, covered with a whitish bloom wh<strong>en</strong> young<br />

which t<strong>en</strong>ds to disappear. Cuticle <strong>in</strong>itially f<strong>in</strong>ely velvety,<br />

soon becom<strong>in</strong>g viscous, wr<strong>in</strong>kled surface especially <strong>in</strong><br />

marg<strong>in</strong>al zone; chestnut brown, hazelnut, brown dark,<br />

except at the extreme edges which have a perman<strong>en</strong>tly<br />

white surface, discoloured to pale ochre towards the edge.<br />

TUBES up to 30 mm, depressed-adnate, milk white th<strong>en</strong><br />

yellowish, f<strong>in</strong>ally olivish, uniform to gill edge; pores very<br />

small, concolour with the tubes, unchang<strong>in</strong>g to the touch.<br />

STIPE up to 150 × 100 mm, obese, th<strong>en</strong> v<strong>en</strong>tricular or<br />

cyl<strong>in</strong>drical, with rounded base; milk white <strong>in</strong> young, later<br />

hazelnut or pale brown; f<strong>in</strong>e mesh lattice, concolour with<br />

background, spread over most of the surface.<br />

FLESH firm and compact wh<strong>en</strong> young, th<strong>en</strong> a little soft<br />

<strong>in</strong> maturation; white, slightly brown-reddish for a few<br />

millimetres under the cuticle; with typical pleasant odour,<br />

very pleasant flavour, sweet, like hazelnut.<br />

MICROSCOPY: ellipsoidal fusiform-spores with weak<br />

elevated depression, 13.2-15.9 × 4.5-5.1 µm, pale yellow<br />

150<br />

Boletus edulis Bull. : Fr.<br />

under microscope; olive brown <strong>in</strong> mass; basidia mostly<br />

bi- and trisporic.<br />

HABITAT: ubiquitous <strong>in</strong> the woods, oft<strong>en</strong> associated<br />

with Fagus, Picea, Abies, but also with many other<br />

species (chestnut, p<strong>in</strong>e, birch, hazel, etc.) Found <strong>in</strong><br />

temperate or cool periods, from late summer to late<br />

autumn, Widespread and very common.<br />

EDIBILITY: edible<br />

NOTE - This is the “autumnal porc<strong>in</strong>o”, common and<br />

recognised <strong>in</strong> almost all the cont<strong>in</strong><strong>en</strong>ts, where it manifests<br />

a substantial stability <strong>in</strong> its characteristics and it associates<br />

with a great number of be<strong>in</strong>gs. It is recognisable by its<br />

viscous cap, which t<strong>en</strong>ds to lose its colour, especially at<br />

the edges. B. aereus and B. aestivalis are similar, but<br />

these have dry caps and more-richly coloured stipes from<br />

the start; B. p<strong>in</strong>ophilus, which also has a viscous cuticle,<br />

but shows w<strong>in</strong>ey-brown tones on its cap and an obclavate<br />

stipe.


CAP 80-220 (300) mm, very fleshy, from hemispheric to<br />

pulv<strong>in</strong>ate-convex, f<strong>in</strong>ally flat; edge curv<strong>in</strong>g at extreme<br />

edges, f<strong>in</strong>ally dist<strong>en</strong>ded, scattered with whitish bloom<br />

which t<strong>en</strong>ds to dissolve at maturation; cuticle <strong>in</strong>itially<br />

f<strong>in</strong>ely velvety, soon becom<strong>in</strong>g viscous, rugulous; v<strong>in</strong>ous<br />

brown, garnet, reddish-brown, copper red, with sporadic<br />

discoloured areas<br />

TUBES width up to 30 mm, depressed-adnate, milk white<br />

to straw yellow, th<strong>en</strong> yellow-gre<strong>en</strong>, f<strong>in</strong>ally uniform<br />

olivish to gill edge; pores are very small, concolour with<br />

the tubes, oft<strong>en</strong> slightly rusty <strong>in</strong> maturation, unchang<strong>in</strong>g<br />

to the touch.<br />

STIPE up to 100-200 × 50-120 (150) mm, typically<br />

obese, th<strong>en</strong> a little longer, but relatively short and stocky<br />

and almost always dilated-rounded at base; whitish, th<strong>en</strong><br />

soon show<strong>in</strong>g h<strong>in</strong>ts of reddish brown. Displays a f<strong>in</strong>e<br />

lattice, concolour with background, which covers most of<br />

the stipe.<br />

FLESH firm and compact, th<strong>en</strong> a little soft and watery;<br />

white, purplish for a few millimetres under the cuticle;<br />

Boletus p<strong>in</strong>ophilus Pilát & Dermek<br />

[= B. p<strong>in</strong>icola Vittad<strong>in</strong>i, non Swartz]<br />

typically pleasant, but weak odour, very pleasant sweet<br />

taste.<br />

MICROSCOPY: ellipsoidal fusiform spores with weak<br />

elevated depression, 13.6-16.3 × 4.5-5.2 µm, pale yellow<br />

under microscope; olivish brown <strong>in</strong> mass.<br />

HABITAT ma<strong>in</strong>ly associated with Picea, P<strong>in</strong>us, Fagus,<br />

Castanea. Fruits typically two times a year: <strong>in</strong> late spr<strong>in</strong>g,<br />

at lower altitudes, and from the late summer to late<br />

autumn <strong>in</strong> the mounta<strong>in</strong>s and at high altitudes. Recurr<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - Usually better known under the name B. p<strong>in</strong>icola<br />

Vitt. (an <strong>in</strong>valid name as it has already be<strong>en</strong> used to<br />

designate a lignicole fungus, today known as Fomitopsis<br />

p<strong>in</strong>icola), it is popularly called the “red porc<strong>in</strong>e”. Its name<br />

would seem to suggest it is found only <strong>in</strong> aff<strong>in</strong>ity with<br />

p<strong>in</strong>e trees, however B. p<strong>in</strong>ophilus is, much like edulis, a<br />

widely-occurr<strong>in</strong>g species and is more usually found under<br />

beech or fir trees.<br />

151


CAP up to 150 (200) mm, from hemispheric to convex,<br />

th<strong>en</strong> flat-pulv<strong>in</strong>ate; regular edge, marg<strong>in</strong>s slightly larger.<br />

Plical, f<strong>in</strong>ely felted surface, <strong>in</strong>itially coral p<strong>in</strong>k-red, to<br />

raspberry p<strong>in</strong>k, discoloured with age, ga<strong>in</strong><strong>in</strong>g yellowish<br />

tones, oft<strong>en</strong> also with olive tones; cracks at areole <strong>in</strong> dry<br />

weather.<br />

TUBES similar thickness to flesh of the cap, wh<strong>en</strong><br />

carpophore matures, stipe is rounded; from gold yellow to<br />

olive gre<strong>en</strong>; quickly turn<strong>in</strong>g blue if cut l<strong>en</strong>gthwise; small<br />

pores, round th<strong>en</strong> a little angular; from gold yellow to<br />

olive gre<strong>en</strong>, uniform or turn<strong>in</strong>g blue if bruised<br />

STIPE usually narrower <strong>in</strong> diameter compared to cap on<br />

maturation of carpophore, up to 40 (50) mm <strong>in</strong> diameter;<br />

stocky, with thick base, more oft<strong>en</strong> than not cyl<strong>in</strong>drical;<br />

pale chrome yellow, oft<strong>en</strong> with <strong>in</strong>nate raspberry red spots<br />

towards base; surface unchang<strong>in</strong>g to the touch. Lattice<br />

usually limited to upper half, oft<strong>en</strong> slightly raised,<br />

concolour with background.<br />

FLESH <strong>in</strong>itially very firm <strong>in</strong> cap and also <strong>in</strong> adult<br />

carpophore, while stipe t<strong>en</strong>ds to become fibrous; pale<br />

152<br />

Boletus regius Krombholz<br />

yellow, more <strong>in</strong>t<strong>en</strong>se yellow above tubes and under the<br />

bark of stipe, oft<strong>en</strong> reddish only at extreme base of stipe,<br />

rarely or never turn<strong>in</strong>g blue at gill edge <strong>in</strong> zone above<br />

tubes. Weak, slightly fruity odour; sweet flavour.<br />

MICROSCOPY: spore pale yellow under microscope,<br />

fusiform dim<strong>en</strong>sions 11.3-14.5 × 3.5-4.5 µm. Spores olive<br />

brown.<br />

HABITAT: isolated or <strong>in</strong> small groups under hardwood<br />

trees, ma<strong>in</strong>ly Fagus sylvatica and Castanea sativa <strong>in</strong><br />

acidic ground; from early summer to autumn<br />

EDIBILITY: edible<br />

NOTE - A beautiful species which is only confusable<br />

with the Boletus pseudoregius, which however has more<br />

slant<strong>in</strong>g proportions and flesh which manifests fairly<br />

<strong>in</strong>t<strong>en</strong>se tones. This species has be<strong>en</strong> implicated <strong>in</strong> several<br />

cases of poison<strong>in</strong>g after undercooked carpophores were<br />

consumed.


CAP 120-300 mm, very fleshy, from hemispheric to<br />

convex; cuticle f<strong>in</strong>ely velvety wh<strong>en</strong> young, soon<br />

becom<strong>in</strong>g hairless, dry, milk white, pale grey, cream,<br />

oft<strong>en</strong> with olivish hues, f<strong>in</strong>ally brownish olive, oft<strong>en</strong> just<br />

p<strong>in</strong>kish at edges <strong>in</strong> examples that have grown <strong>in</strong> humid<br />

weather.<br />

TUBES up to 25 mm, rounded near stipe, from yellow, to<br />

yellow-gre<strong>en</strong>ish, f<strong>in</strong>ally olivish, blue at gill edge; pores<br />

very small, <strong>in</strong>itially yellow but soon red, carm<strong>in</strong>e red or<br />

red-orange; rarely rema<strong>in</strong><strong>in</strong>g yellow or weakly orange<br />

ev<strong>en</strong> at maturity; blue wh<strong>en</strong> touched.<br />

STIPE 60-150 × 50-100 mm, narrower <strong>in</strong> diameter than<br />

cap, very stocky, obese, pear shaped, more oft<strong>en</strong> than not<br />

cyl<strong>in</strong>drical; usually yellow at <strong>in</strong>sertion to cap, red or p<strong>in</strong>kpurple,<br />

fuchsia at lower part. Lattice g<strong>en</strong>erally concolour<br />

with background, of f<strong>in</strong>e mesh, isodiametric, limited to<br />

upper half of stipe; the surface turns blue to the touch.<br />

FLESH very firm and compact wh<strong>en</strong> young, soft wh<strong>en</strong><br />

old, pale yellow, turn<strong>in</strong>g pale blue at gill edge; weak<br />

particular odour wh<strong>en</strong> young, cadaverous or of decay<strong>in</strong>g<br />

substances wh<strong>en</strong> mature, sweet flavour. MICROSCOPY:<br />

Boletus satanas L<strong>en</strong>z<br />

ellipsoidal spores, with weak elevated depression, 11.4-<br />

13.4 × 5.1-5.9 µm, yellow under microscope; olive brown<br />

<strong>in</strong> mass.<br />

HABITAT: warm and chalky woods, associated with<br />

Quercus, commonly with Castanea or Fagus, not at high<br />

altitudes. Summer-autumn, not very common.<br />

EDIBILITY: toxic<br />

NOTE - This is one of the largest boletes, characteristic<br />

for its short and paunchy stipe and for the cadaverous<br />

odour that it emits wh<strong>en</strong> ripe. Its light cap, red pores and<br />

the latex <strong>in</strong> its stipe help to dist<strong>in</strong>guish it from other<br />

species of Luridi that might seem similar. In many cases,<br />

it can be found with completely yellow pores and stipe,<br />

and as such it can ev<strong>en</strong> resemble certa<strong>in</strong> species of<br />

App<strong>en</strong>diculati (Boletus fechtneri). Notwithstand<strong>in</strong>g, its<br />

dist<strong>in</strong>ctive and unmistakeable odour helps <strong>in</strong> its<br />

id<strong>en</strong>tification. Toxic wh<strong>en</strong> raw, suspect (and certa<strong>in</strong>ly<br />

poorly tolerated by many people) ev<strong>en</strong> wh<strong>en</strong> cooked<br />

thoroughly.<br />

153


CAP 40-80 mm, from convex to flat, convoluted edges,<br />

oft<strong>en</strong> undulated, smooth, silky, matt, white, dirty white or<br />

dirty cream, oft<strong>en</strong> sta<strong>in</strong>ed ochre or cracked.<br />

GILLS crowded, close, adnate or non marg<strong>in</strong>ated, from<br />

whitish to pale cream, with the surface undulated or<br />

cr<strong>en</strong>ulated, coloured.<br />

STIPE 40-70 × 10-20 mm, cyl<strong>in</strong>drical, almost clavate or<br />

att<strong>en</strong>uated towards the base, bloom<strong>in</strong>g or fully fibrillated,<br />

th<strong>en</strong> filled, whitish or dirty cream.<br />

FLESH thick, hard or a little spongy, white, with strong<br />

smell of flour and sweet, floury flavour.<br />

MICROSCOPY: spore 5-6 × 2.5-3.5 µm, ellipsoidal,<br />

smooth, hyal<strong>in</strong>e; basidia 20-25 × 3-5 µm, tetrasporic,<br />

tightly clavate, filled with siderophile granules; epicyte<br />

formed from <strong>in</strong>terwov<strong>en</strong> hyphae, width of 3-5 µm,<br />

hyphae of subgelled stratum surface, with membranous<br />

pigm<strong>en</strong>tation; usually with h<strong>in</strong>ges.<br />

154<br />

Calocybe gambosa (Fr. : Fr.) Donk<br />

[= Lyophyllum georgii (L. : Fr.) Kühner & Romagnesi;<br />

Tricholoma georgii (L. : Fr.) Quélet]<br />

HABITAT: grows isolated or <strong>in</strong> groups, more oft<strong>en</strong> <strong>in</strong><br />

circles or semicircles (witches’ circles) <strong>in</strong> grassy areas <strong>in</strong><br />

meadows, or <strong>in</strong> clear<strong>in</strong>gs <strong>in</strong> coniferous or hardwood areas,<br />

particularly close to Rosaceae.<br />

EDIBILITY: edible<br />

NOTE - This is a much sought after mushroom with many<br />

pseudonyms, the most famous of which is probably St.<br />

George’s mushroom (so named because the period <strong>in</strong><br />

which it grows <strong>in</strong> near that sa<strong>in</strong>t’s day). In literature<br />

several varieties have be<strong>en</strong> id<strong>en</strong>tified based on the diverse<br />

colours that the cap can assume and ev<strong>en</strong> sometimes the<br />

differ<strong>en</strong>t odours it gives off. For example, C. graveol<strong>en</strong>s<br />

(= Tricholoma georgii fo. flavida) has a darker cap and a<br />

rather unpleasant odour.


BASIDIOCARP up to 100 (150) mm, composed of a<br />

fertile glebe protected by two cortical layers (<strong>en</strong>do - and<br />

exoperidia) supported by spongy sterile base; subglobular<br />

subellipsoidal or with short fairly differ<strong>en</strong>tiated<br />

pseudostipe; <strong>in</strong>itially mostly convex on upper part th<strong>en</strong><br />

truncated-flat, external surface of exoperidium smooth,<br />

ruffled-rugulous and th<strong>en</strong> separated <strong>in</strong>to aureola; from<br />

milk white to pale grey ochre-ish. Across cracks produced<br />

by one sees that the <strong>en</strong>doperidium aureola <strong>in</strong> maturity is<br />

grey-brown and f<strong>in</strong>ally dark brown, <strong>in</strong> adults the sk<strong>in</strong><br />

tears so ext<strong>en</strong>sively and irregularly as to allow the<br />

dispersal of spores which rema<strong>in</strong> for a long time on the<br />

ground; very spongy base, slightly marcescible, uniformly<br />

brown.<br />

GLEBE white, th<strong>en</strong> yellowish, gre<strong>en</strong>ish, olive, f<strong>in</strong>ally<br />

brown-olivish or chocolate brown; fairly soft consist<strong>en</strong>cy,<br />

th<strong>en</strong> dusty.<br />

Calvatia utriformis (Bull. : Pers.) Jaap<br />

[= Lycoperdon caelatum Bull. : Pers.]<br />

MICROSCOPY: spore globular, with warty surface, of<br />

diameter 4-5 µm, brownish to microscope. Spores olive<br />

brown <strong>in</strong> mass.<br />

HABITAT: isolated or <strong>in</strong> groups of several <strong>in</strong>dividuals,<br />

oft<strong>en</strong> with many examples jo<strong>in</strong>ed at base, <strong>in</strong> meadows and<br />

<strong>in</strong> mounta<strong>in</strong> pasture, from summer to autumn; recurr<strong>en</strong>t<br />

EDIBILITY: edible<br />

NOTE - From summer’s <strong>en</strong>d, walk<strong>in</strong>g through mounta<strong>in</strong><br />

meadows, one can oft<strong>en</strong> come across the seem<strong>in</strong>gly<br />

<strong>in</strong>destructible brownish remnants of this large “puffball”.<br />

These residues can <strong>in</strong> fact persist on the ground for over a<br />

year. It may be confused with some Lycoperdaceae,<br />

which are also edible, such as Langermannia gigantea,<br />

the largest, with its near-smooth exoperidium, free of<br />

pseudostipe. C. utriformis is also morphologically very<br />

similar to Vascellum prat<strong>en</strong>se of which, at first glance, it<br />

seems to be a giant form.<br />

155


156<br />

Camarophyllus prat<strong>en</strong>sis (Pers. : Fr.) Kummer<br />

[= Hygrocybe prat<strong>en</strong>sis var. prat<strong>en</strong>sis (Fr.) Murril; = Cuphophyllus prat<strong>en</strong>sis (Pers. : Fr.) Bon]<br />

CAP 25-80 mm, hemispheric th<strong>en</strong> convex, oft<strong>en</strong> with<br />

mostly obtuse umbo, f<strong>in</strong>e marg<strong>in</strong>; hairless, radially dry<br />

away from fairly f<strong>in</strong>e fibrils; pale apricot orange or fleshy<br />

ochre, sometimes covered with white bloom; cuticle<br />

detachable for 3/4 of radius.<br />

GILLS curved, deeply decurr<strong>en</strong>t, concolour with cap or<br />

paler, highly spaced, noticeably thick, oft<strong>en</strong> spoked,<br />

<strong>in</strong>tercalated with numerous lamellule.<br />

STIPE 40-100 × 5-12 mm, normally cyl<strong>in</strong>drical or<br />

att<strong>en</strong>uated at base, more rarely obclavate, from whitish to<br />

pale orange, visibly fibrous, fully dry, oft<strong>en</strong> <strong>in</strong>vaded by<br />

larvae or small <strong>in</strong>sects, soon becom<strong>in</strong>g filled.<br />

FLESH thick and firm fibrous <strong>in</strong> stipe; whitish or faded<br />

yellow <strong>in</strong> cap, white elsewhere, odourless, pleasant<br />

flavour.<br />

MICROSCOPY: spore mostly ellipsoidal, 5-6.7 × 4.2-5<br />

µm; tetrasporophyte basidia, sometimes bisporic, and so<br />

produce larger spores, up to 8.6 µm.<br />

HABITAT: grassy areas, meadows, clear<strong>in</strong>gs <strong>in</strong><br />

hardwood areas; gregarious; widespread and common<br />

from summer to late autumn.<br />

EDIBILITY: edible<br />

NOTE - This is a good species of edible mushroom,<br />

which has se<strong>en</strong> fair commercial success, despite its<br />

fibrous flesh. Due to its orange colour, it can be confused<br />

with Hygrophorus nemoreus, but the latter has an ev<strong>en</strong><br />

more fibrous cap, flesh which both smells and tastes of<br />

flour, pale gills, which range from creamy-whitish to flesh<br />

coloured. It also has a smooth sub-bilateral lamellar trama<br />

and grows <strong>in</strong> the woods (or, at least <strong>in</strong> the vic<strong>in</strong>ity of<br />

trees). Several varieties are reported as differ<strong>en</strong>t <strong>in</strong><br />

literature due to their differ<strong>in</strong>g size and colour (var.<br />

robustus, of larger size, var. Donad<strong>in</strong>i with d<strong>en</strong>ticulate<br />

edges, var. Vitul<strong>in</strong>us, more fragile and pale).


CAP 30-70 (120) mm, <strong>in</strong>itially highly differ<strong>en</strong>tiated from<br />

stipe, th<strong>en</strong> convex, th<strong>en</strong> dist<strong>en</strong>ded with edge convoluted at<br />

the extremes, ev<strong>en</strong>tually irregularly flat-gibbous up to<br />

fairly deeply depressed-<strong>in</strong>fundibulform, marg<strong>in</strong>al zone<br />

very th<strong>in</strong>, with progressively rough, s<strong>in</strong>uous-lobed,<br />

wr<strong>in</strong>kled <strong>in</strong> parts, sh<strong>in</strong>y appearance; with humidity<br />

m<strong>in</strong>utely velvety, smooth; wh<strong>en</strong> dry, orange, apricot,<br />

pal<strong>in</strong>g yolk-yellow.<br />

HYMENOPHORE pseudolamellar, very forked from<br />

compound-branched folds, abundantly spored,<br />

anastomosed, highly decurr<strong>en</strong>t <strong>in</strong> adults, close, thick, with<br />

fairly dull surface, coloured or subconcolour with cap,<br />

Sometimes with p<strong>in</strong>k shades.<br />

STIPE 30-60 (90) × 12-25 mm, cyl<strong>in</strong>drical, normally<br />

progressively flared towards gill <strong>in</strong>sertion, oft<strong>en</strong> ev<strong>en</strong> a<br />

little dilated at base, full, firm <strong>in</strong> maturity softer-rubbery,<br />

hairless, subcoloured.<br />

FLESH white, with yellow-p<strong>in</strong>kish sta<strong>in</strong>s on outer zone,<br />

abundant on circumfer<strong>en</strong>ce, firm and compact <strong>in</strong> cap,<br />

fibrous and almost leathery <strong>in</strong> stipe; pleasant odour, like<br />

Cantharellus cibarius (Fr. : Fr.) Fries<br />

apricot or white peach sk<strong>in</strong> or sweet fruit. Initially mild<br />

flavoured, th<strong>en</strong> sour-astr<strong>in</strong>g<strong>en</strong>t-spicy.<br />

MICROSCOPY: spore from ovoid to ellipsoidal,<br />

sometimes sublarmiform, smooth or fairly evid<strong>en</strong>tly<br />

gra<strong>in</strong>y, 7.5-9.6 × 4.6-5.6 µm.<br />

HABITAT: very common and widespread all over, from<br />

hilly hardwood areas to coniferous mounta<strong>in</strong>s; from start<br />

of summer to late autumn.<br />

EDIBILITY: edible<br />

NOTE - A much sought and valued edible mushroom, this<br />

is one of the few which are also eat<strong>en</strong> <strong>in</strong> both southern<br />

and northern Europe. Literature is full of variants of this<br />

fungus which are sometimes considered separate species,<br />

sometimes mere variants. The var. bicolor is more<br />

precocious and displays a very pale cap and stipe which<br />

are whitish, <strong>in</strong> stark contrast to its yolk-yellow gills; the<br />

var. ferrug<strong>in</strong>asc<strong>en</strong>s has tones of olive gre<strong>en</strong> and a strong<br />

t<strong>en</strong>d<strong>en</strong>cy to assume a rusty colour wh<strong>en</strong> handled; the var.<br />

amethysteus has violet adnate scales on its cap, and can<br />

typically be found under beech trees.<br />

157


CAP 15-45 (65) mm, convex-umbillicate, th<strong>en</strong> flat with<br />

fairly wide c<strong>en</strong>tral depression, <strong>in</strong>fundibulform, edge b<strong>en</strong>t<br />

and f<strong>in</strong>e at the extremes, progressively multi-lobed, fuzzy<br />

<strong>in</strong> parts, fissile, revolute <strong>in</strong> old examples, s<strong>in</strong>uous;<br />

fibrillous-scaly orange brown or reddish brown.<br />

HYMENOPHORE reduced to low v<strong>en</strong>ucole with<br />

numerous branches and anastomoses, mostly rounded at<br />

marg<strong>in</strong>, rugulous, not <strong>in</strong>frequ<strong>en</strong>tly subsmooth especially<br />

<strong>in</strong> stipe where it is, somewhat blurred, decurr<strong>en</strong>t<br />

l<strong>en</strong>gthwise, yellow-orange, yellow or grey<strong>in</strong>g with a h<strong>in</strong>t<br />

of salmon p<strong>in</strong>k <strong>in</strong> paler forms.<br />

STIPE 35-70 × 8-12 mm, normally highly irregular,<br />

dilated at tip and progressively att<strong>en</strong>uated towards base,<br />

oft<strong>en</strong> b<strong>en</strong>t, canalicular-compressed, gibbous and wr<strong>in</strong>kled,<br />

hairless, hollow-tubular, highly characteristic bright<br />

orange colour or h<strong>in</strong>t of p<strong>in</strong>k salmon,.<br />

FLESH exiguous all over, of fibrous and fairly t<strong>en</strong>aciouselastic<br />

consist<strong>en</strong>cy, cream or pale yellowish; fruity odour,<br />

like of plums or of flowers of the Muscari family, sweet<br />

flavour.<br />

158<br />

Cantharellus lutesc<strong>en</strong>s (Pers. : Fr.) Fries<br />

[= C. aurora (Batsch) Kuyper]<br />

MICROSCOPY: spore from ellipsoidal to ovoid, smooth,<br />

guttulate, 9.6-11.4 × 6.5-7.8 µm.<br />

HABITAT: summer-autumn, <strong>in</strong> hardwood or coniferous<br />

woods, oft<strong>en</strong> <strong>in</strong> grassy or mossy areas, more rarely on<br />

bare ground, widespread all over and abundant <strong>in</strong> grow<strong>in</strong>g<br />

area.<br />

EDIBILITY: edible<br />

NOTE - Had the name C. aurora not be<strong>en</strong> synonymised,<br />

this would have the nom<strong>en</strong>clatorial priority, however,<br />

s<strong>in</strong>ce C. lutesc<strong>en</strong>s is widely used, we adhere to this<br />

b<strong>in</strong>omial and hope it lasts. Good to eat, Especially after<br />

dry<strong>in</strong>g and th<strong>en</strong> steep<strong>in</strong>g <strong>in</strong> water and milk. Its f<strong>in</strong>e and<br />

slightly fibrous-elastic flesh make it appear like another<br />

species of similar colour: C. tubaeformis, but this latter<br />

has a hym<strong>en</strong>ophore with fairly dist<strong>in</strong>ct pseudogills; less<br />

vivid colours, rang<strong>in</strong>g from shades of gray to grey-brown,<br />

and is less odorous.


BASIDIOCARP appearance <strong>in</strong> young specim<strong>en</strong>s of a<br />

rounded oval, <strong>in</strong>ternally gelat<strong>in</strong>ous, while external surface<br />

is fragile and waxy at branches. Wh<strong>en</strong> cut, the parts ready<br />

for growth are clearly visible.<br />

EXOPERIDUM is similar to a rail<strong>in</strong>g round the elongated<br />

polygonal meshes, vivid colour, grows up to 70 mm <strong>in</strong><br />

diameter at full developm<strong>en</strong>t. On the lower part,<br />

connected to the remnants of the primordial oval, a volva<br />

is formed, the th<strong>in</strong> elongated hyphal rhizomorphs are<br />

clearly visible and whitish.<br />

GLEBE formed from small granules of gre<strong>en</strong>-blackish<br />

mucilage conta<strong>in</strong><strong>in</strong>g spores, gives off a strong unpleasant<br />

odour similar to that of Phallus impudicus.<br />

Clathrus ruber Mich. ex Pers. : Pers.<br />

MICROSCOPY: ellipsoidal spores, 5 ¥ 6 µm. Spores of<br />

white-brownish colour.<br />

HABITAT: grows fairly isolated <strong>in</strong> the humid parts of<br />

woods, from summer to autumn.<br />

EDIBILITY: non edible<br />

NOTE - This is a rare species, but which grows<br />

abundantly <strong>in</strong> its chos<strong>en</strong> areas. It has the same cadaverous<br />

odour of Phallus impudicus; an odour which appears ev<strong>en</strong><br />

before the mushroom does. The same repell<strong>en</strong>t odour is<br />

oft<strong>en</strong> responsible for this species be<strong>in</strong>g <strong>in</strong>vaded by flies.<br />

159


160<br />

Clitocybe cerussata (Fr. : Fr.) Kummer<br />

[= C. phyllophila (Pers. Fr.) Kummer; = C. pytiophila (Fries) Gillet]<br />

CAP 40-90 mm, convex th<strong>en</strong> flat, typically umbonate.<br />

pure white cuticle, smooth, covered with sericeous fibrils,<br />

bloom<strong>in</strong>g, matt; at most slightly cream colour under<br />

fibrils.<br />

GILLS from adnate to subdecurr<strong>en</strong>t, very crowded, pure<br />

white, sometimes a little cream, concolour with the whole<br />

surface,.<br />

STIPE 40-70 × 10-15 mm, from cyl<strong>in</strong>drical to subclavate,<br />

full, white, slightly fibrillated with base covered with<br />

white flakes.<br />

FLESH whitish, firm with no significant odour or flavour.<br />

SPORES white.<br />

MICROSCOPY: ellipsoidal spores, 5.0-6.0 × 3.0-4.0 µm,<br />

smooth, cyanophilia, preval<strong>en</strong>t <strong>in</strong> tetrads <strong>in</strong> dry<br />

conditions, obtuse base. basidia 16-25 × 4-6 µm,<br />

tetrasporic. hym<strong>en</strong>ophore almost regular. very loose<br />

Pileipellis <strong>in</strong>terwov<strong>en</strong> with structure of hyphal cutis.<br />

HABITAT: gregarious, <strong>in</strong> coniferous woods; fairly<br />

common and widespread, from <strong>en</strong>d of summer.<br />

EDIBILITY: toxic<br />

NOTE - C. phyllophila belongs to a group of organisms<br />

which are very similar to each other, and which maybe<br />

repres<strong>en</strong>t differ<strong>en</strong>t aspects of one, s<strong>in</strong>gle species. Wh<strong>en</strong><br />

try<strong>in</strong>g to dist<strong>in</strong>guish betwe<strong>en</strong> C. cerussata (Fr. : Fr.)<br />

Kummer and C. phyllophila (Pers.: Fr.) Kummer, one<br />

would m<strong>en</strong>tion the habitat of conifers for the former and<br />

of hardwood trees for the latter, and also their differ<strong>en</strong>t<br />

spore colours (p<strong>in</strong>k-cream <strong>in</strong> C. phyllophila). It is not so<br />

simple to dist<strong>in</strong>guish C. phyllophila from C. candicans<br />

(Pers.: Fr.) Kummer or C. rivulosa (Pers.: Fr.) Kummer.<br />

Normally C. phyllophila is slightly larger than these two<br />

latter species and has characteristic adnate, slightly<br />

decurr<strong>en</strong>t gills, and spores arranged <strong>in</strong> tetrads <strong>in</strong> dried<br />

specim<strong>en</strong>s. C. candicans, with its slant<strong>in</strong>g gait, has more<br />

decurr<strong>en</strong>t gills and s<strong>in</strong>gle spores. C. rivulosa (= C.<br />

dealbata s<strong>en</strong>su auct. plur.) normally grows <strong>in</strong> meadows.


CAP 60-200 mm, quite deeply <strong>in</strong>fundibulform, with<br />

c<strong>en</strong>tral umbo emerg<strong>in</strong>g from cavity, not hygrophanous,<br />

not striated for transpar<strong>en</strong>cy, pale ochre-ish, alutaceous,<br />

smooth, matt, silky, F<strong>in</strong>ely felted.<br />

GILLS fairly deeply decurr<strong>en</strong>t, fairly crowded, whitish,<br />

sta<strong>in</strong>ed p<strong>in</strong>kish-brown, concolour with the whole surface.<br />

STIPE 60-150 × 13-20 mm, from cyl<strong>in</strong>drical to lightly<br />

clavate, filled, subcoloured to cap, bear<strong>in</strong>g white fibrils<br />

l<strong>en</strong>gthwise, tom<strong>en</strong>tum white at base.<br />

FLESH white, with particular aromatic odour, and<br />

<strong>in</strong>significant flavour.<br />

SPORES white.<br />

MICROSCOPY: ellipsoidal spores, 6.0-7.0 × 5.2-6.0 µm,<br />

smooth, s<strong>in</strong>gle <strong>in</strong> dry conditions, sublacrimoid base.<br />

basidia 40-45 × 7-9 µm, tetrasporic. Fairly regular<br />

hym<strong>en</strong>ophore texture, colourless hyphae, width 3-8 µm.<br />

Pileipellis <strong>in</strong>terwov<strong>en</strong> with structure of hyphae cutis,<br />

Clitocybe geotropa (Bull.) Quélet<br />

width 3-7 µm, with membranous and m<strong>in</strong>utely <strong>en</strong>crust<strong>in</strong>g.<br />

pigm<strong>en</strong>t<br />

HABITAT: terrestrial, gregarious, <strong>in</strong> hardwood and<br />

coniferous woods or <strong>in</strong> meadows and pastures, <strong>in</strong> the<br />

shape of "witches’ circles", not widespread but with<br />

pl<strong>en</strong>ty of areas of growth. Autumn and late autumn.<br />

EDIBILITY: edible<br />

NOTE - Unmistakeable thanks to its typical shape,<br />

characterised by a very long stipe compared to cap<br />

diameter and to its fairly large size, this late-appear<strong>in</strong>g<br />

species is a much sought edible.<br />

With its basidia, which are fairly long for a clitocybe, C.<br />

geotropa is grouped <strong>in</strong> the subg<strong>en</strong>us Hygroclitocybe Bon,<br />

<strong>in</strong>side which it is unique for its subregular lamellar<br />

trama, its sublacrimoid spores and its mixed<br />

pigm<strong>en</strong>tation.<br />

161


CAP 30-80 mm, fairly deeply <strong>in</strong>fundibulform, with or<br />

without umbo, with the edges convoluted, th<strong>en</strong> straight,<br />

oft<strong>en</strong> ribbed, not hygrophanous, not striated by<br />

transpar<strong>en</strong>cy, ochre-ish pale or alutaceous light reddish,<br />

f<strong>in</strong>ely felted, matt.<br />

GILLS decurr<strong>en</strong>t, fairly crowded, b<strong>en</strong>t, light yellowish<br />

brown, oft<strong>en</strong> with p<strong>in</strong>k sta<strong>in</strong>s, with the whole surface,<br />

coloured.<br />

STIPE 20-50 × 5-8 mm, from cyl<strong>in</strong>drical to lightly<br />

clavate, filled, th<strong>en</strong> fistular, from whitish to light yellow,<br />

g<strong>en</strong>erally lighter than cap, smooth or with white fibrils<br />

l<strong>en</strong>gthwise, with tom<strong>en</strong>tum white at base.<br />

FLESH whitish, with pleasant “cyanide” odour and sweet<br />

flavour.<br />

SPORES white.<br />

MICROSCOPY: ellipsoidal spores, 5.2-6.6 × 4-4.6 µm,<br />

smooth, not cyanophilous, s<strong>in</strong>gle <strong>in</strong> dry conditions, with<br />

conflu<strong>en</strong>t base, lacrimoid. Basidia 22-30 × 5-7 µm,<br />

162<br />

Clitocybe gibba (Pers. : Fr.) Kummer<br />

[= Clitocybe <strong>in</strong>fundibuliformis (Schaeff.) Quélet]<br />

tetrasporic. Hym<strong>en</strong>ophore texture regular with colourless<br />

hyphae. Pileipellis <strong>in</strong>terwov<strong>en</strong> horizontally with structure<br />

of hyphae cutis, with f<strong>in</strong>ely <strong>en</strong>crusted pigm<strong>en</strong>t.<br />

HABITAT: <strong>in</strong> groups, also numerous, <strong>in</strong> hardwood and<br />

coniferous woods<br />

EDIBILITY: edible<br />

NOTE - It is known and sought after <strong>in</strong> Italy as the<br />

“imbut<strong>in</strong>o” (funnel mushroom), and a much-appreciated<br />

edible, despite its fairly tough flesh. C. gibba belongs to<br />

the subg<strong>en</strong>us Clitocybe whose species are characterised<br />

by their typically funnel-like caps which are oft<strong>en</strong> opaque<br />

and almost velvety, by their decurr<strong>en</strong>t gills, the<br />

(sub)regular hym<strong>en</strong>ophoral trama and by the colour<strong>in</strong>g <strong>in</strong><br />

their stipe walls. It is not always easy to dist<strong>in</strong>guish it<br />

from C. costata, though it can normally be id<strong>en</strong>tified by<br />

its stipe be<strong>in</strong>g lighter than its cap and its cap cover<strong>in</strong>g<br />

hav<strong>in</strong>g a negative reaction to treatm<strong>en</strong>t with KOH.


CAP 80-150 mm, convex, with convoluted edges, not<br />

hygrophanous, from ash grey to grey-brown, smooth,<br />

f<strong>in</strong>ely felted, fibrillated from adnate to lightly decurr<strong>en</strong>t,<br />

fairly crowded, pale cream, with the whole surface<br />

coloured.<br />

STIPE 60-90 × 15-30 mm, clavate, filled, subcoloured to<br />

cap, striated l<strong>en</strong>gthwise with f<strong>in</strong>e fibrils, base covered<br />

with white mycelial felt.<br />

FLESH white, with strong aromatic, slightly unpleasant<br />

smell and unpleasant flavour.<br />

SPORES yellowish cream.<br />

MICROSCOPY: ellipsoidal spores, 6.0-7.5 × 3.-4.5 µm,<br />

smooth, cyanophilous, preval<strong>en</strong>t <strong>in</strong> tetrads <strong>in</strong> dry<br />

conditions, obtuse base. basidia 20-25 × 5-7 µm,<br />

tetrasporic. Hym<strong>en</strong>ophore texture regular with colourless<br />

hyphae. Pileipellis with structure of hyphal cutis more or<br />

less parallel, with <strong>in</strong>tracellular pigm<strong>en</strong>tation.<br />

Clitocybe nebularis (Batsch : Fr.) Kummer<br />

HABITAT: ubiquitous, <strong>in</strong> large groups; very common <strong>in</strong><br />

autumn and late autumn.<br />

EDIBILITY: suspect<br />

NOTE - This is a well known species, which <strong>in</strong> many<br />

areas is gathered and eat<strong>en</strong> with impunity. In any case,<br />

rec<strong>en</strong>t studies (based on nutritional casuistics) seem to<br />

demonstrate the toxicity of the species, or at least, the illtolerance<br />

of it by several <strong>in</strong>dividuals. Based on the spore<br />

colour, the cyanophylla of the spore wall (which is<br />

smooth to optical microscopes, but warty to electronic<br />

ones), C. nebularis was considered by several authors,<br />

such as Moser and Bon, as belong<strong>in</strong>g to the g<strong>en</strong>us<br />

Lepista. We prefer, <strong>in</strong> accordance with Kuyper, to keep it<br />

<strong>in</strong> the g<strong>en</strong>us Clitocybe, along with numerous other similar<br />

species which display cyanophylla and coloured spores<br />

which are smooth under an optical microscope.<br />

163


CAP 60-150 (220) × 30-70 mm, <strong>in</strong>itially glandiform to<br />

more or less cyl<strong>in</strong>drical th<strong>en</strong>, <strong>in</strong> maturity, from<br />

campanulate to conical, more expanded with age, f<strong>in</strong>ally<br />

deliquesc<strong>en</strong>t start<strong>in</strong>g at the edges; surface <strong>in</strong>itially silky<br />

and white, soon becom<strong>in</strong>g covered <strong>in</strong> overlapp<strong>in</strong>g scales<br />

from whitish to light brown on white background; cap<br />

oft<strong>en</strong> jo<strong>in</strong>ed and ochre-ish.<br />

GILLS very crowded, unequal, very wide, free to stipe,<br />

<strong>in</strong>itially white, th<strong>en</strong>, p<strong>in</strong>kish at edges, ev<strong>en</strong>tually black,<br />

deliquesc<strong>en</strong>t.<br />

STIPE 100-200-(300) × 10-25-(35) mm, separable from<br />

cap, slim <strong>in</strong> maturity, att<strong>en</strong>uated at tip and fairly bulbous<br />

at base, white, bear<strong>in</strong>g f<strong>in</strong>e white fibrils, empty with age;<br />

medial or basal annulus, which is membranous, m<strong>in</strong>ute,<br />

white, sometimes black due to spores.<br />

FLESH slightly thick, t<strong>en</strong>der <strong>in</strong> cap and soon becom<strong>in</strong>g<br />

fibrous <strong>in</strong> stipe, white; weak and pleasant odour and<br />

flavour.<br />

MICROSCOPY: spore from ellipsoidal to ovoid, smooth,<br />

with c<strong>en</strong>trally germ<strong>in</strong>at<strong>in</strong>g pores, brown-black under<br />

164<br />

Copr<strong>in</strong>us comatus (Müll. : Fr.) S.F. Gray<br />

microscope, 11-14.5 × 6.5-8 mm; tetrasporophyte basidia.<br />

Black spores.<br />

HABITAT: from the spr<strong>in</strong>g to late autumn <strong>in</strong> grassy and<br />

fertile areas <strong>in</strong> gard<strong>en</strong>s, at the edge of wheel tracks, <strong>in</strong><br />

flood pla<strong>in</strong>s, <strong>in</strong> large groups; frequ<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - This is, most probably, the only Copr<strong>in</strong>us which<br />

is considered edible and, as such, it deserves a certa<strong>in</strong><br />

level of att<strong>en</strong>tion; several authors, <strong>in</strong> fact, consider it<br />

excell<strong>en</strong>t or, ev<strong>en</strong>, «the best edible species»; the exiguity<br />

of its flesh, however, means that long cook<strong>in</strong>g times<br />

should be avoided and therefore would best be eat<strong>en</strong> fried<br />

or ev<strong>en</strong> raw. In any case one should only eat young<br />

specim<strong>en</strong>s, which still have perfectly white gills. This<br />

species is unlikely to be confused with similar species:<br />

Copr<strong>in</strong>us sterquil<strong>in</strong>us grows <strong>in</strong> dung, is solitary or found<br />

<strong>in</strong> small group<strong>in</strong>gs, it is also more sl<strong>en</strong>der and has larger<br />

pores; Copr<strong>in</strong>us vosoustii, is far rarer, has a nondeliquesc<strong>en</strong>t<br />

star shape cover<strong>in</strong>g on its cap and much<br />

larger spores.


CAP 40-80 mm, <strong>in</strong>itially fleshy, campanulate-convex,<br />

th<strong>en</strong> flat-convex, ev<strong>en</strong>tually dist<strong>en</strong>ded gibbous or with<br />

wide c<strong>en</strong>tral umbo, edges convoluted th<strong>en</strong> straight,<br />

slightly lobed, dry cuticle, non-hygrophanous, matt, silky,<br />

d<strong>en</strong>sely fibrillated or scaled, reddish brown orange, brown<br />

auburn.<br />

GILLS adnate-non-marg<strong>in</strong>ated, fairly spaced, wide,<br />

bulg<strong>in</strong>g, brown ochre-ish, brown reddish orange th<strong>en</strong><br />

rusty reddish due to spores, with eroded surface,<br />

yellowish on face.<br />

STIPE 40-90 × 10-15 mm, fairly slim, cyl<strong>in</strong>drical but<br />

oft<strong>en</strong> att<strong>en</strong>uated at base, more or less supple, full, firm<br />

citr<strong>in</strong>a yellow, reddish orange <strong>in</strong> the c<strong>en</strong>tre, decorated<br />

l<strong>en</strong>gthwise with coloured fibrils.<br />

FLESH firm non hygrophanous, ochre-ish, reddish h<strong>in</strong>t,<br />

with radish-like odour and acidic flavour.<br />

MICROSCOPY: ellipsoidal amygdalform spores, 10-12.5<br />

× 5.5-6.5 µm, d<strong>en</strong>sely covered with f<strong>in</strong>e warts.<br />

Filam<strong>en</strong>tous epicyte, with <strong>en</strong>crusted pigm<strong>en</strong>t.<br />

Cort<strong>in</strong>arius orellanus Fries<br />

HABITAT: isolated or gregarious, mostly under oak<br />

trees, but also under beech and hazelnut; not widespread,<br />

but constant <strong>in</strong> grow<strong>in</strong>g areas; from <strong>en</strong>d of summer to all<br />

of autumn.<br />

EDIBILITY: deadly<br />

NOTE - Characterised by its fairly robust shape, its scaly<br />

orange-brown cap, subdistant coloured gills, yellowish<br />

stipe and root-like odour, C. orellanus is responsible for<br />

some of the worst cases cytotoxic poison<strong>in</strong>g, which have<br />

a particularly grave effect on the r<strong>en</strong>al system.<br />

Consider<strong>in</strong>g its long lat<strong>en</strong>cy period, the so called<br />

Orellanus syndrome is extremely dangerous. Of equal<br />

toxicity is the C. orellanoides (= C. speciosissimus),<br />

which has similar colour<strong>in</strong>g, but which is found <strong>in</strong> conifer<br />

woods. This latter typically has a conical-umbonate cap<br />

and a stipe which is decorated with changeable, yellowish<br />

zig-zag stripes.<br />

165


CAP 50-200 mm, <strong>in</strong>itially subhemispheric, th<strong>en</strong> convex,<br />

ev<strong>en</strong>tually flat-convex, with f<strong>in</strong>e edges, convoluted at the<br />

extremes, th<strong>en</strong> straight, very thick and t<strong>en</strong>acious cuticle,<br />

viscid <strong>in</strong> humid weather, sh<strong>in</strong>y, chocolate brown,<br />

becom<strong>in</strong>g a little reddish, brown purple, more or less<br />

bl<strong>en</strong>ded with grey-violet or lilac tones, scattered with<br />

large silky silver purple strips, residues of veil, marked at<br />

the edge with visible wr<strong>in</strong>kles or radial grooves.<br />

GILLS adnate-non-marg<strong>in</strong>ated, fairly crowded, bulg<strong>in</strong>g,<br />

grey<strong>in</strong>g or dirty whitish, h<strong>in</strong>t of violet, th<strong>en</strong> clay brown,<br />

f<strong>in</strong>ally rusty due to spores, with jagged surface, whitish.<br />

STIPE 70-150 (200) × 20-40 mm, very robust,<br />

progressively dilated to a large non-marg<strong>in</strong>ated bulb, a<br />

little root<strong>in</strong>g; full, firm and almost bare at tip, hairless,<br />

whitish th<strong>en</strong> cream, marked l<strong>en</strong>gthwise with silky fibrils,<br />

the lower two thirds visibly decorated with thick residues<br />

from veil, violet-blue silver <strong>in</strong> colour<br />

FLESH thick, very firm white or cream, h<strong>in</strong>ts of violet at<br />

top part of stipe, with weak, slightly fruity and pleasant<br />

odour and sweet flavour.<br />

166<br />

Cort<strong>in</strong>arius praestans (Cordier) Gillet<br />

MICROSCOPY: spore from amygdalform to<br />

subcitriform, 14.0-17.0 × 8.0-10.0 µm, covered with<br />

coarse evid<strong>en</strong>t warts. Filam<strong>en</strong>tous gelled epicyte, made<br />

from frail hyphae. Membranous pigm<strong>en</strong>t.<br />

HABITAT: <strong>in</strong>frequ<strong>en</strong>t but abundant <strong>in</strong> grow<strong>in</strong>g area,<br />

found <strong>in</strong> hardwood areas.<br />

EDIBILITY: edible<br />

NOTE - By far and away the largest of the Cort<strong>in</strong>ari, a<br />

real giant, plus it has organoleptic properties which make<br />

it a choice edible <strong>in</strong> great demand by <strong>en</strong>thusiasts. Beyond<br />

its size and masterly shape, the morphochromatic details<br />

which assist <strong>in</strong> its id<strong>en</strong>tification are the abs<strong>en</strong>ce of a<br />

marg<strong>in</strong>ated bulb, the whitish colour of the gills which<br />

contrast with the reddish-brown of the cap, an abundant<br />

universal veil, at least <strong>in</strong> young specim<strong>en</strong>s, which leaves<br />

clear traces on the cap but above all on the stipe, and its<br />

large spores. C. cumatilis is fairly similar, but is far<br />

smaller and grows under conifers.


CAP 35-75 (90) mm conical-campanulate th<strong>en</strong> dist<strong>en</strong>ded<br />

with broad and slightly acc<strong>en</strong>tuated obtuse umbo, fairly<br />

fleshy for the g<strong>en</strong>us Entoloma; steel blue with h<strong>in</strong>ts of<br />

grey, t<strong>en</strong>d<strong>en</strong>cy to take on a less obvious grey-brownviolet<br />

colour with age, oft<strong>en</strong>, with whitish bursts, dry,<br />

hairless and jo<strong>in</strong>t at op<strong>en</strong><strong>in</strong>g, soon becom<strong>in</strong>g dissociated<br />

from gathered fibrils, ev<strong>en</strong>tually fairly split; oft<strong>en</strong><br />

rugulous-wr<strong>in</strong>kled <strong>in</strong> maturity. F<strong>in</strong>e Cuticle, separable,<br />

and only with small stripes.<br />

GILLS non-marg<strong>in</strong>ated-adnate, v<strong>en</strong>tricular, fairly wide,<br />

with surface irregularly undulated; white ivory,<br />

sometimes (wh<strong>en</strong> se<strong>en</strong> flat) almost pale cream, soon<br />

becom<strong>in</strong>g p<strong>in</strong>kish due to matur<strong>in</strong>g of spores, ev<strong>en</strong>tually<br />

dirty p<strong>in</strong>k.<br />

STIPE 30-70 × 12-25 mm, normally wid<strong>en</strong><strong>in</strong>g <strong>in</strong> the<br />

middle and fairly tapered at base, not <strong>in</strong>frequ<strong>en</strong>tly<br />

slightly canalicular, firm, full, fibrillated l<strong>en</strong>gthwise,<br />

concolour with cap, oft<strong>en</strong> with violet t<strong>in</strong>ges especially at<br />

Entoloma bloxamii (Berk. & Br.) Saccardo<br />

[= E. madidum (Fries) Gillet]<br />

tip, always lighter or white at base; loses a lot of tone<br />

<strong>in</strong>t<strong>en</strong>sity with age, becom<strong>in</strong>g slightly grey-blueish.<br />

FLESH white, firm slightly fibrous <strong>in</strong> stipe flavourful,<br />

floury odour.<br />

MICROSCOPY: polygonal, subisometric spores, with<br />

evid<strong>en</strong>t apex 7.5-8.7 (9.5) × 6.2-8.2 (9.5) µm; jo<strong>in</strong>t at<br />

h<strong>in</strong>ge.<br />

HABITAT: <strong>in</strong> meadows and <strong>in</strong> grassy and op<strong>en</strong> areas of<br />

woods; autumnal species, pres<strong>en</strong>t from pla<strong>in</strong>s to<br />

mounta<strong>in</strong>s, not common, gregarious.<br />

EDIBILITY: edible<br />

NOTE - This is one of the tricholomatoid Entoloma with<br />

the most beautiful colour and shape; similar to E.<br />

bloxamii for its shape and habitat is E. porphyrophaeum,<br />

which, however, does not have the blueish colouration but<br />

is grey-violet or grey-purple-ish and has longer spores of<br />

8.6-11.6 × 6-7.8 µm.<br />

167


CAP 50-200 mm, <strong>in</strong>itially campanulate, th<strong>en</strong> convex,<br />

ev<strong>en</strong>tually flat, with or without a low umbo, edges<br />

undulated, convoluted, lobed, the cuticle more or less<br />

light grey with silky t<strong>in</strong>ges, metallic or ev<strong>en</strong> lead grey,<br />

grey brownish, bloom<strong>in</strong>g, lead or silverish from f<strong>in</strong>e<br />

fibrils.<br />

GILLS deeply non-marg<strong>in</strong>ated, almost free, fairly spaced,<br />

b<strong>en</strong>t, th<strong>en</strong> more or less v<strong>en</strong>tricular, typically yellow, soon<br />

becom<strong>in</strong>g yellowish salmon p<strong>in</strong>k or p<strong>in</strong>k ochre-ish, with<br />

the surface serrated, coloured.<br />

STIPE 50-140 × 15-35 mm, slim, cyl<strong>in</strong>drical or supple,<br />

oft<strong>en</strong> wid<strong>en</strong>ed but oft<strong>en</strong> also att<strong>en</strong>uated at base, firm full<br />

th<strong>en</strong> filled, white, pru<strong>in</strong>ose at tip, marked l<strong>en</strong>gthwise with<br />

silky fibrils.<br />

FLESH white, firm non hygrophanous, with strong,<br />

unpleasant floury smell, and unpleasant flavour, border<strong>in</strong>g<br />

on disgust<strong>in</strong>g.<br />

168<br />

Entoloma s<strong>in</strong>uatum (Bull. : Fr.) Kummer<br />

[= Entoloma lividum (Bull. ) Quélet]<br />

MICROSCOPY: spore subisodiametric, with 6 sides, 8.5-<br />

11.0 × 7.5-8.5 µm. Tetrasporophyte basidia, with jo<strong>in</strong>ts to<br />

h<strong>in</strong>ge. Cheilocystidia abs<strong>en</strong>t. epicyte framed from<br />

(ixo)cutis. Intracellular pigm<strong>en</strong>t. Jo<strong>in</strong>ts at h<strong>in</strong>ge.<br />

HABITAT: <strong>in</strong> hardwood areas, preferably Quercus and<br />

Fagus; from <strong>en</strong>d of summer to late autumn; fairly<br />

common.<br />

EDIBILITY: toxic<br />

NOTE - Despite its fleshy, <strong>in</strong>vit<strong>in</strong>g appearance and its<br />

oft<strong>en</strong>-pleasant, floury odour, this species is a dangerous<br />

one, the cause of pot<strong>en</strong>tially severe gastro<strong>in</strong>test<strong>in</strong>al<br />

illness. An added risk comes from its similarity with<br />

Clitocybe nebularis, a mushroom commonly consumed <strong>in</strong><br />

certa<strong>in</strong> parts of Italy, and with which E. s<strong>in</strong>uatum oft<strong>en</strong><br />

shares its habitat and grow<strong>in</strong>g period. The latter has a<br />

non-fibrous cap, fairly decurr<strong>en</strong>t, separable gills, a whitish<br />

cream colour and a very particular, strong odour.


ASCOCARP stipitate and pileate.<br />

MITRA up to 35 mm, irregular shape vaguely resembl<strong>in</strong>g<br />

a horse saddle, with two-three lobes stretch<strong>in</strong>g towards<br />

the outside, many take on a curly appearance, whitish,<br />

ivory, up to fairly dark cream. Hym<strong>en</strong>ophore covered<br />

with visible part of mitra, smooth, undulated. Lower<br />

surface slightly lighter, tom<strong>en</strong>tose-floccose. S<strong>in</strong>uouslobed<br />

edge, jagged.<br />

STIPE height up to 120 mm, cyl<strong>in</strong>drical-clavate, wid<strong>en</strong>ed<br />

towards at base, deeply ploughed l<strong>en</strong>gthwise, <strong>in</strong>complete<br />

both <strong>in</strong>ternally and externally, white or whitish.<br />

FLESH leathery, but fairly elastic, sub-brittle; whitish, no<br />

dist<strong>in</strong>ctive odour or flavour.<br />

MICROSCOPY: ellipsoidal or mostly ellipsoidal spores,<br />

smooth, 18-19 × 10-12 µm, hyal<strong>in</strong>e under microscope,<br />

monoguttulate, uniseriat <strong>in</strong> asco; cyl<strong>in</strong>drical asci, non<br />

amyloid, octasporic; cyl<strong>in</strong>drical th<strong>in</strong> paraphyses, with<br />

clavate apex.<br />

Helvella crispa (Scop. : Fr.) Fries<br />

HABITAT: on the ground <strong>in</strong> hardwood or mixed woods<br />

or, also <strong>in</strong> grass, s<strong>in</strong>gle or <strong>in</strong> small group<strong>in</strong>gs of several<br />

specim<strong>en</strong>s. Common <strong>in</strong> summer-late autumn. Sometimes<br />

ev<strong>en</strong> <strong>in</strong> late spr<strong>in</strong>g.<br />

EDIBILITY: edible<br />

NOTE - Helvella lactea has a similar shape, but is<br />

smaller (just 30-40 mm tall), and is completely ice white,<br />

has a smooth lower surface and fruits on the ground or on<br />

decay<strong>in</strong>g plant matter (Frax<strong>in</strong>us) <strong>in</strong> autumn. H. lacunosa<br />

has a much darker, blackish mitra a brownish-grey stipe,<br />

and is ubiquitous. H. sulcata is considered an extreme<br />

form of H. lacunose by some authors; it is rarer, bigger,<br />

and has a regular “saddle-shaped” it is almost completely<br />

grey <strong>in</strong> colour. Furthermore, it has a yellowish-ochre-ish<br />

or yellowish grey mitra, dim<strong>en</strong>sions rather smaller size,<br />

and prefers southern, sandy ground near H. pityophila.<br />

169


ASCOMA pileate and stipitate, formed from apothecia<br />

(cap) and from stipe; total height up to 100 mm.<br />

APOTHECIA irregularly lobed-curled, rarely<br />

subselliform, composed of two, three or more variously<br />

jo<strong>in</strong>ed lobes, height up to 15-20 mm and of around 30 mm<br />

<strong>in</strong> diameter. External surface (hym<strong>en</strong>ial) irregularly<br />

rippled-undulated, yellowish; lower surface (sterile)<br />

smooth or lightly rough, whitish. Edge irregularly<br />

undulated or s<strong>in</strong>uous.<br />

STIPE up to 80 × 10-20 mm, subcyl<strong>in</strong>drical or<br />

significantly wid<strong>en</strong>ed at base, pleated-ribbed, lacunous<br />

<strong>in</strong>ternally, concolour with cap towards top, but with lilac<br />

or grey-lilac sta<strong>in</strong>s, more marked at base.<br />

FLESH elastic and fairly t<strong>en</strong>acious, but fragile, brittle,<br />

whitish-yellow<strong>in</strong>g; <strong>in</strong>significant odour and flavour.<br />

MICROSCOPY: spores mostly ellipsoidal, 18-20 × 11-<br />

12.5 µm, guttulate, with smooth wall, hyal<strong>in</strong>e, uniseriat <strong>in</strong><br />

asco; whitish <strong>in</strong> mass. Cyl<strong>in</strong>drical octasporic, not amyloid<br />

170<br />

Helvella pityophila Boud.<br />

asci. Cyl<strong>in</strong>drical paraphyses, dilatate at tip, sometimes<br />

forked, with several septums.<br />

HABITAT: species not widespread all over, fruits alone<br />

or <strong>in</strong> small groups g<strong>en</strong>erally on sandy ground <strong>in</strong> humid<br />

hardwood coniferous woods (ma<strong>in</strong>ly P<strong>in</strong>us sp.) In both<br />

alp<strong>in</strong>e and subalp<strong>in</strong>e mediterranean areas; summerautumn.<br />

EDIBILITY: edible<br />

NOTE - Very similar to H. crispa (Scop. : Fr.) Fr., it can<br />

be dist<strong>in</strong>guished only by its colour<strong>in</strong>g, which t<strong>en</strong>ds to be<br />

grey with cream reflections at the apothecia and have an<br />

abs<strong>en</strong>ce of grey-lilac tones on its stipe. H. crispa can also<br />

reach larger dim<strong>en</strong>sions (up to 120 mm <strong>in</strong> height) and is<br />

g<strong>en</strong>erally found only <strong>in</strong> hardwood forests. H. lactea Boud.<br />

is smaller (grow<strong>in</strong>g to a height of 40 mm), is completely<br />

white, becom<strong>in</strong>g ochre-ish-brown <strong>in</strong> dry conditions; it has<br />

smaller spores (16-18 × 11-12 µm), and fruits <strong>in</strong> autumn<br />

<strong>in</strong> woods rich <strong>in</strong> decay<strong>in</strong>g and decompos<strong>in</strong>g plant matter.


CAP 15-50 mm, <strong>in</strong>itially mostly campanulate or<br />

subhemispheric, ev<strong>en</strong>tually convex or convex-flat,<br />

hairless, sh<strong>in</strong>y-lubricated appearance <strong>in</strong> humid conditions,<br />

sh<strong>in</strong>y-dry <strong>in</strong> dry conditions; <strong>in</strong> these latter conditions<br />

shows very adpressed radial fibrils (slowly!). Marg<strong>in</strong><br />

fairly regular, <strong>in</strong>itially <strong>in</strong>flected, f<strong>in</strong>e, t<strong>en</strong>d<strong>en</strong>cy to crack<br />

radially; <strong>in</strong>t<strong>en</strong>se red-cherry or red-carm<strong>in</strong>e colour, pal<strong>in</strong>g<br />

until white to from disc but always with a characteristic<br />

red annulus <strong>in</strong> the peripheral area. F<strong>in</strong>e cuticle, separable<br />

until circumfer<strong>en</strong>ce.<br />

GILLS adnate or briefly decurr<strong>en</strong>t, s<strong>in</strong>uous-v<strong>en</strong>tricular,<br />

rarely b<strong>en</strong>t, wide, thick, unequal, fairly sparse,<br />

<strong>in</strong>tercalated by numerous lamellule of differ<strong>en</strong>t l<strong>en</strong>gths;<br />

yellow <strong>in</strong>itially, soon becom<strong>in</strong>g red-orange or cherry red,<br />

the surface rema<strong>in</strong>s yellow.<br />

STIPE 30-80 × 5-8 mm, irregularly cyl<strong>in</strong>drical,<br />

sometimes compressed-canalicular, oft<strong>en</strong> b<strong>en</strong>t, fragile,<br />

dry, coloured cap at tip, more shades elsewhere, white<br />

base; hollow.<br />

Hygrocybe cocc<strong>in</strong>ea (Schaeff. : Fr.) Kummer<br />

FLESH f<strong>in</strong>e, from yellow orange to red orange, also red<br />

cherry on periphery, watery, odourless, mild <strong>in</strong>significant<br />

flavour.<br />

MICROSCOPY: elliptical spores at prosurface or<br />

amygdalform, 8-10 × 4.2-5.2 µm; tetrasporophyte basidia.<br />

HABITAT: <strong>in</strong> humid and mossy grassy areas, pastures,<br />

clear<strong>in</strong>gs, gregarious and abundant <strong>in</strong> grow<strong>in</strong>g area,<br />

frequ<strong>en</strong>t; <strong>en</strong>d of summer-autumn ev<strong>en</strong> late autumn.<br />

EDIBILITY: edible<br />

NOTE - Among other small, red Hygrocybes this one’s<br />

cap, which is absolutely hairless and never scalytom<strong>en</strong>tose<br />

sets it apart from H. m<strong>in</strong>iata. Less simple<br />

however is its dist<strong>in</strong>ction from other hairless redcap<br />

species. H. reae is smaller, has a striated marg<strong>in</strong>, bitter<br />

flesh and is abundantly viscous-glut<strong>in</strong>ous; H. <strong>in</strong>sipida is a<br />

near replica of the previously-described mushroom, but<br />

has sweet flesh and a size closer to H. cocc<strong>in</strong>ea; H.<br />

punicea is noticeably larger, has a campanulate cap,<br />

yellow stipe and white flesh with clear red fibrils.<br />

171


CAP 10-30 mm, campanulate or hemispheric-umbonate,<br />

th<strong>en</strong> dist<strong>en</strong>ded to a fairly prom<strong>in</strong><strong>en</strong>t and acute papilla or<br />

dist<strong>en</strong>ded and mostly umbonate, abundantly viscousglut<strong>in</strong>ous,<br />

fragile, with the marg<strong>in</strong> f<strong>in</strong>e and striated with<br />

transpar<strong>en</strong>cy; highly polychrome, yellow ochre-ish<br />

olivish, grass gre<strong>en</strong> with sulphur yellow tones, yellow<br />

orange with gre<strong>en</strong> sta<strong>in</strong>s, sometimes the yellow pigm<strong>en</strong>t<br />

is abs<strong>en</strong>t thus the gre<strong>en</strong> tones evolve towards blue-blueish<br />

ones. F<strong>in</strong>e cuticle, yet separable at circumfer<strong>en</strong>ce.<br />

GILLS non-marg<strong>in</strong>ated-adnate, spaced, v<strong>en</strong>tricular, with<br />

regular and jo<strong>in</strong>t surface; gold<strong>en</strong> yellow, saffron yellow,<br />

sometimes with gre<strong>en</strong>ish or tawny sta<strong>in</strong>s (nearly white <strong>in</strong><br />

abs<strong>en</strong>ce of yellow pigm<strong>en</strong>t); <strong>in</strong>tercalated by numerous<br />

lamellule of differ<strong>en</strong>t l<strong>en</strong>gths.<br />

STIPE 40-80 × 3-6 mm, cyl<strong>in</strong>drical or progressively<br />

wid<strong>en</strong>ed at base, oft<strong>en</strong> supple-curv<strong>in</strong>g, highly viscous due<br />

to a persist<strong>en</strong>t and thick layer of hyal<strong>in</strong>e glut<strong>en</strong>; yellow<br />

gre<strong>en</strong>ish, gre<strong>en</strong> or gre<strong>en</strong> blueish at tip, sometimes with<br />

tawny or brick coloured ve<strong>in</strong>s, soon becom<strong>in</strong>g hollow.<br />

172<br />

Hygrocybe psittac<strong>in</strong>a (Schaeff. : Fr.) Kummer<br />

FLESH f<strong>in</strong>e, white, yet coloured <strong>in</strong> cap, also fairly<br />

deeply, on periphery, very watery; no odour and slightly<br />

earthy flavour, like moss.<br />

MICROSCOPY: ovoidal spores, smooth, more rarely<br />

ellipsoidal, (6.5) 7.4-9 × 4.5-5.6 µm.<br />

HABITAT: <strong>in</strong> meadows, among grass and moss, highly<br />

camouflaged, <strong>in</strong> autumn; gregarious, fairly frequ<strong>en</strong>t.<br />

EDIBILITY: of no value<br />

NOTE - This species is made unmistakeable by its<br />

colour<strong>in</strong>g and its marked glut<strong>in</strong>ous properties; <strong>in</strong> any<br />

case, there are oft<strong>en</strong> anomalies <strong>in</strong> its pigm<strong>en</strong>t-distribution<br />

(see description), which can make it appear with<br />

unexpected colours. H. perplexa (= H. sciophana) is a<br />

lookalike, though with wider gills, is a brick-red colour<br />

with slight gre<strong>en</strong> t<strong>in</strong>ge and is fairly rare. Ev<strong>en</strong> H. laeta<br />

can seem similar due to its many colours and viscosity,<br />

while H. psittac<strong>in</strong>a, on the other hand, has a convex cap,<br />

and more importantly, very decurr<strong>en</strong>t gills, which are not<br />

non-marg<strong>in</strong>ated or adnate.


CAP 30-60 mm, hemispheric, soon becom<strong>in</strong>g convex,<br />

viscous, <strong>in</strong>itially white, with tempo takes on fairly<br />

ext<strong>en</strong>sive yellowish; edge with fairly regular flow, f<strong>in</strong>ely<br />

hairy, adorned with floccose-cottony granules soon<br />

becom<strong>in</strong>g yellow; f<strong>in</strong>e separable cuticle,.<br />

GILLS decurr<strong>en</strong>t, fairly wide of and fairly spaced, thick,<br />

<strong>in</strong>tercalated from numerous lamellule of differ<strong>en</strong>t l<strong>en</strong>gths;<br />

white, <strong>in</strong> maturity with vague flesh coloured t<strong>in</strong>ges, th<strong>en</strong><br />

t<strong>en</strong>d<strong>en</strong>cy to turn yellow like the rest of the carpophore to<br />

the edge.<br />

STIPE 30-70 × 8-14 mm, slim, cyl<strong>in</strong>drical, normally<br />

att<strong>en</strong>uated at base; cort<strong>in</strong>iform residues visible at tip<br />

which, like the edge of cap, bears the same gra<strong>in</strong>y<br />

floccul<strong>en</strong>ce, characteristic, t<strong>en</strong>d<strong>en</strong>cy to turn yellow,<br />

slightly viscous due to humidity, soon becom<strong>in</strong>g dry<br />

<strong>in</strong>itially full fibrils, soon becom<strong>in</strong>g medullar.<br />

FLESH very f<strong>in</strong>e towards the edges, compact on<br />

circumfer<strong>en</strong>ce, white, due to imbibition takes on a citr<strong>in</strong>a<br />

Hygrophorus chrysodon (Batsch : Fr.) Fries<br />

t<strong>in</strong>ge; <strong>in</strong>dist<strong>in</strong>ctive flavour, odour not especially<br />

pronounced, but clearly of the “cossus” type.<br />

MICROSCOPY: spores l<strong>en</strong>gthwise ellipsoidal, smooth, 8-<br />

9.2 × 4.2-5 µm.<br />

HABITAT: <strong>in</strong> the mounta<strong>in</strong>ous hardwood areas, with<br />

prefer<strong>en</strong>ce for beech but also <strong>in</strong> the coniferous and mixed<br />

woods; gregarious, from <strong>en</strong>d of summer to all of autumn,<br />

fairly common and widespread.<br />

NOTE - This beautiful hygrophore reaches the peak of its<br />

lovel<strong>in</strong>ess wh<strong>en</strong> the granulation which adorns its cap<br />

marg<strong>in</strong> and the tip of its stipe assume their <strong>in</strong>t<strong>en</strong>se yellow<br />

colouration. It is liable to be confused with species of<br />

eburneus-cossus, which however, is highly viscous, non<br />

floccul<strong>en</strong>t and does not visibly yellow. An exception to<br />

this last rule however is H. discoxanthus (= H.<br />

chrysaspis), which, wh<strong>en</strong> it dehydrates, becomes a<br />

dist<strong>in</strong>ct rusty fawn colour (the <strong>en</strong>tire carpophore is rusty<br />

brown wh<strong>en</strong> dried).<br />

173


CAP 15-45 mm, convex, th<strong>en</strong> flat with broad obtuse<br />

umbo, f<strong>in</strong>ally also depressed <strong>in</strong> prediscal area, with the<br />

edge b<strong>en</strong>t at the extremes, excess; pure white, only <strong>in</strong><br />

aged specim<strong>en</strong>s vague pale ochre-ish or flesh colour<br />

sta<strong>in</strong>s are visible on circumfer<strong>en</strong>ce, highly viscousglut<strong>in</strong>ous,<br />

thick, elastic and separable cuticle.<br />

GILLS adnate or slightly decurr<strong>en</strong>t, s<strong>in</strong>uous, slightly<br />

v<strong>en</strong>tricular, th<strong>en</strong> b<strong>en</strong>t, highly thick, not very spaced,<br />

white, f<strong>in</strong>ally lightly flesh coloured; <strong>in</strong>tercalated from<br />

lamellule of differ<strong>en</strong>t l<strong>en</strong>gths.<br />

STIPE 40-100 × 8-15 mm, slim, cyl<strong>in</strong>drical, sometimes<br />

supple, or a little dilated, att<strong>en</strong>uated at base, dry and<br />

floccose at tip, glut<strong>in</strong>ous <strong>in</strong> the lower 3/4; white, with age<br />

oft<strong>en</strong> with ochre-ish shades or p<strong>in</strong>kish at base.<br />

FLESH white, thicker on circumfer<strong>en</strong>ce, not unpleasant<br />

flavour, while on the contrary odour is pronounced and<br />

nauseat<strong>in</strong>g, with fruity, sweet and sour h<strong>in</strong>ts of the<br />

“cossus” family, similar to shellfish cook<strong>in</strong>g, and def<strong>in</strong>ed<br />

<strong>in</strong> literature as similar to the odour of woodworm.<br />

174<br />

Hygrophorus eburneus (Bull. : Fr.) Fries<br />

CHEMICAL REACTION: potassium hydrate (KOH) hot<br />

yellow, yellow orange, base of stipe.<br />

MICROSCOPY: spores l<strong>en</strong>gthwise ellipsoidal, sometimes<br />

subcyl<strong>in</strong>drical, smooth, 7.4-8.5 × 4.5-5.6 µm.<br />

HABITAT: <strong>in</strong> hardwood areas with prefer<strong>en</strong>ce for beech,<br />

but not exclusively; from <strong>en</strong>d of summer to all of autumn,<br />

non very common.<br />

EDIBILITY: non edible<br />

NOTE – H. eburneus is likely to be a collective species <strong>in</strong><br />

which other <strong>en</strong>tities may be grouped which are curr<strong>en</strong>tly<br />

considered as <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t species by some authors. Thus<br />

H. quercetorum is a variant which is just slightly more<br />

robust; we consider H. cossus to be a simple variety with<br />

a yellow pale reaction to potassium. H. discoxanthus (=<br />

H. chrysapsis), despite be<strong>in</strong>g similar morphologically, we<br />

believe merits the dignity of its own species thanks to its<br />

all-over colouration of rusty-fawn to brown reddish, <strong>in</strong><br />

dry conditions, which is ev<strong>en</strong> more evid<strong>en</strong>t <strong>in</strong> dried<br />

samples.


CAP 50-120 (160) mm, convex with broad and obtuse<br />

c<strong>en</strong>tral umbo, th<strong>en</strong> dist<strong>en</strong>ded and also depressed around<br />

umbo, very fleshy, firm glut<strong>in</strong>ous, grey-sooty or greygre<strong>en</strong>ish,<br />

oft<strong>en</strong> with vaguely lilac sta<strong>in</strong>s (similar to<br />

Gomphidius glut<strong>in</strong>osus); g<strong>en</strong>erally the disc peripheral<br />

zone are darker, wide areas decorated <strong>in</strong> ivory white<br />

pres<strong>en</strong>t elsewhere. Thick, stocky, very adher<strong>en</strong>t cuticle.<br />

GILLS b<strong>en</strong>t-decurr<strong>en</strong>t, whitish, th<strong>en</strong> sta<strong>in</strong>ed ochre- pale<br />

flesh colour; thick, wide, v<strong>en</strong>ous on background, not very<br />

spaced, <strong>in</strong>tercalated from numerous lamellule, g<strong>en</strong>erally<br />

small and short <strong>in</strong> l<strong>en</strong>gth.<br />

STIPE 60-150 x 20-50 mm, full, bulky, fusoid, obese <strong>in</strong><br />

middle th<strong>en</strong> subroot<strong>in</strong>g, white, covered by hyal<strong>in</strong>e glut<strong>in</strong>e<br />

(only <strong>in</strong> maturity or dry<strong>in</strong>g more brown-olivish coloured<br />

<strong>in</strong> parts), floccose decorations at tip.<br />

FLESH thick, compact, firm white; odourless, no<br />

particular flavour.<br />

Hygrophorus latitabundus Britzelmayr<br />

(= Hygrophorus limac<strong>in</strong>us Scop. ex Fr. ss. Auct.)<br />

HABITAT: exclusively <strong>in</strong> P<strong>in</strong>us woods, <strong>in</strong> mounta<strong>in</strong>ous<br />

and coastal areas fairly late; rare, but abundant <strong>in</strong> grow<strong>in</strong>g<br />

area.<br />

MICROSCOPY: spores fairly l<strong>en</strong>gthwise ellipsoidal 8.5-<br />

11.5 x 4.7-7 µm. Tetrasporophyte basidia.<br />

EDIBILITY: edible<br />

NOTE - This is a very heavily-set Hygrophorus. It<br />

belongs to the Olivaceoumbr<strong>in</strong>i with Hygrophorus<br />

olivaceoalbus, which is decidedly frailer, with a sl<strong>en</strong>der<br />

stipe and associated with spruce and with H. persoonii (=<br />

H. dichrous), a mushroom which can reach a considerable<br />

size, but which fruits associated with oak and has a<br />

particular gre<strong>en</strong> reaction to ammonia fumes. Other species<br />

of the g<strong>en</strong>us are easily recognisable by their differ<strong>en</strong>t<br />

morphological features.<br />

175


CAP 35-100 (150) mm, convex-hemispheric, soon<br />

becom<strong>in</strong>g dist<strong>en</strong>ded with broad obtuse umbo, f<strong>in</strong>ally also<br />

depressed <strong>in</strong> prediscal area, with edge b<strong>en</strong>t at the<br />

extremes, th<strong>in</strong>ned; <strong>in</strong>itially white or whitish ivory, shades<br />

of cream or yellow-p<strong>in</strong>kish on circumfer<strong>en</strong>ce <strong>in</strong> adults<br />

some excoriation is also pres<strong>en</strong>t; slightly viscous due to<br />

humidity, soon becom<strong>in</strong>g dry g<strong>en</strong>erally ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a<br />

fairly sh<strong>in</strong>y look.<br />

GILLS adnate, fairly decurr<strong>en</strong>t <strong>in</strong> adults, b<strong>en</strong>t, thick and<br />

spaced, concolour with cap or fairly uniformly pale<br />

cream; <strong>in</strong>tercalated from lamellule.<br />

STIPE 30-70 (90) × 12-25 (30) mm, typically tapered at<br />

base, firm and fleshy, barely reaches <strong>in</strong> l<strong>en</strong>gth the same<br />

dim<strong>en</strong>sions as the diameter of cap; dry or slightly viscous<br />

with humidity, white, ev<strong>en</strong>tually ochre-ish at base <strong>in</strong><br />

adults; full.<br />

FLESH abundant on circumfer<strong>en</strong>ce, firm and compact,<br />

more fibrous <strong>in</strong> stipe, white; flavourful, sometimes with<br />

slightly bitter aftertaste, odour is not very clear but<br />

characteristic and unmistakable, like boiled milk.<br />

176<br />

Hygrophorus p<strong>en</strong>arius Fries<br />

CHEMICAL REACTION: flesh of stipe reacts yellow<br />

with KOH.<br />

MICROSCOPY: ellipsoidal spores, sometimes briefly<br />

ellipsoidal, smooth, 6-7.4 × 4.5-5 µm.<br />

HABITAT: <strong>in</strong> autumn, <strong>in</strong> hardwood areas, especially <strong>in</strong><br />

the oak; abundant <strong>in</strong> grow<strong>in</strong>g area.<br />

EDIBILITY: edible<br />

NOTE - Much sought after due to its good organoleptic<br />

characteristics, and <strong>in</strong>exp<strong>en</strong>sive thanks to its flesh<strong>in</strong>ess,<br />

H. p<strong>en</strong>arius has earned a reputation as the best edible<br />

hygrophore. Other similar white and dry hygrophores are:<br />

H. Karst<strong>en</strong>ii, found on mounta<strong>in</strong> spruce, with apricot<br />

gills, H. poetarum, found <strong>in</strong> beech forests, which has a<br />

matt cap, p<strong>in</strong>k t<strong>in</strong>ge and a balsamic odour; H. phages,<br />

grows on beech, is slightly shorter, with a p<strong>in</strong>kish<br />

reflection on its gills; f<strong>in</strong>ally H. barbatulus, a rare species<br />

with a pale cream-ochre-ish cap, is fairly hairy on its<br />

marg<strong>in</strong> and has ochre-cream-ish gills.


CAP: 35-100 (135) mm, convex with edge convoluted<br />

and excessive at the extreme edges, th<strong>en</strong> from pulv<strong>in</strong>ate to<br />

fairly dist<strong>en</strong>ded sometimes lobed, very fleshy; <strong>in</strong>itially<br />

whitish, soon becom<strong>in</strong>g fairly sporadically spotted with<br />

w<strong>in</strong>e red patches or frills, more crowded on<br />

circumfer<strong>en</strong>ce, th<strong>en</strong> with zone fairly wide of delicate<br />

raspberry p<strong>in</strong>k, sometimes also completely coloured with<br />

the same tone, sometimes yellow<strong>in</strong>g with age; lightly<br />

viscous to humid weather, soon becom<strong>in</strong>g dry very f<strong>in</strong>e<br />

cuticle, separable for 1/2-2/3 of radius.<br />

GILLS: from horizontal-adnate to lightly b<strong>en</strong>t-adnate,<br />

sometimes non-marg<strong>in</strong>ated; very crowded for the<br />

Hygrophorus g<strong>en</strong>us, thick, of irregular width but always<br />

fairly scarce; white or whitish-flesh coloured, <strong>in</strong> maturity<br />

fairly d<strong>en</strong>sely spotted with w<strong>in</strong>y red colour, <strong>in</strong>tercalated<br />

from lamellule <strong>in</strong> report of ca. 1:1.<br />

STIPE: 35-70 × 10-25 mm, irregularly cyl<strong>in</strong>drical, oft<strong>en</strong><br />

slightly att<strong>en</strong>uated at base, floccose at tip, white th<strong>en</strong><br />

Hygrophorus russula (Schaeff. : Fr.) Quélet<br />

[= Tricholoma russula (Schaeff. : Fr.) Gillet]<br />

fairly ext<strong>en</strong>sively marked with red-purpl<strong>in</strong>g spots; dry,<br />

firm, full.<br />

FLESH: white, very firm can take on light p<strong>in</strong>kish sta<strong>in</strong>s<br />

especially towards the foot of stipe; highly variable<br />

flavour also conta<strong>in</strong>ed <strong>in</strong> the same report, from mild (ca.<br />

50%) to bitter up to clearly bitter, no significant odour.<br />

MICROSCOPY: ovoid or ellipsoidal spores (6) 7-9.3 ×<br />

4.5-5.2 µm.<br />

HABITAT: <strong>in</strong> hardwood areas with prefer<strong>en</strong>ce for oak, <strong>in</strong><br />

autumn and also late autumn, gregarious <strong>in</strong> large groups,<br />

rarely solitary.<br />

EDIBILITY: edible<br />

NOTE - In some zones it is highly prized and is stored <strong>in</strong><br />

oil. The most trustworthy characteristic <strong>in</strong> dist<strong>in</strong>guish<strong>in</strong>g<br />

it from the similar species, H. erubesc<strong>en</strong>s, is the particular<br />

crowdedness of its gills; other valid dist<strong>in</strong>guish<strong>in</strong>g<br />

features are its habitat, its <strong>in</strong>disposition to yellow<strong>in</strong>g, and<br />

its slightly-smaller pores.<br />

177


CAP 20-50 mm, <strong>in</strong>itially convex, th<strong>en</strong> from flat to<br />

depressed <strong>in</strong> c<strong>en</strong>tre, with the edges convoluted at the<br />

extremes, th<strong>en</strong> dist<strong>en</strong>ded, a little undulated, scalloped and<br />

furrowed; completely vivid purple-amethyst fairly dark,<br />

pal<strong>in</strong>g, with dry conditions, towards grey-blueish, ochrecream<br />

or dirty white with lilac-ish t<strong>in</strong>ges; cap cover<strong>in</strong>g<br />

matt, smooth or felted, slightly scaled <strong>in</strong> the c<strong>en</strong>tre;<br />

hygrophanous.<br />

GILLS mostly adnate to stipe or a little decurr<strong>en</strong>t,<br />

fairly spaced, width of and thick, anastomosate at base;<br />

vivid violet, pru<strong>in</strong>ose; with irregular surface.<br />

STIPE 40-60 (100) × 4-8 mm, cyl<strong>in</strong>drical, oft<strong>en</strong><br />

undulated, oft<strong>en</strong> wider at tip, striated l<strong>en</strong>gthwise with<br />

white fibrils on dark violet-amethyst background; whitish<br />

towards base, strongly pal<strong>in</strong>g <strong>in</strong> dry conditions and wh<strong>en</strong><br />

cut l<strong>en</strong>gthwise reveals whitish flesh.<br />

178<br />

Laccaria amethyst<strong>in</strong>a (Huds.) Cooke<br />

FLESH f<strong>in</strong>e <strong>in</strong> cap, pale violet; flesh of stipe is fibrous,<br />

elastic, white and firm with sweet odour and flavour.<br />

MICROSCOPY: spores 9.0-10.0 × 8.5-10.0 µm, globular,<br />

with tall sp<strong>in</strong>es up to 2 mm; tetrasporophyte basidia.<br />

Cheilocystidia abundant, 30-80 × 6.0-10.0 µm, wiry,<br />

irregular, sometimes branched, hyal<strong>in</strong>e. Pileipellis<br />

hyphae cutis cyl<strong>in</strong>drical arranged radially.<br />

HABITAT: grows humus rich soil, from hills to<br />

mounta<strong>in</strong>s, gregarious or <strong>in</strong> groups, <strong>in</strong> hardwood and<br />

coniferous woods.<br />

EDIBILITY: of no value<br />

NOTE - This species cannot be confused with other<br />

Laccaria. Only very old and particularly dry specim<strong>en</strong>s,<br />

which have lost their characteristic violet colour, run any<br />

risk of confus<strong>in</strong>g one as to their id<strong>en</strong>tity.


CAP 10-35 mm, <strong>in</strong>itially convex, th<strong>en</strong> flat and depressed,<br />

striated for transpar<strong>en</strong>cy almost up to c<strong>en</strong>tre; edges from<br />

round to cr<strong>en</strong>ulated. hygrophanous cuticle, ochre-beige,<br />

f<strong>in</strong>ely scaly with dry weather with almost marg<strong>in</strong>al area,<br />

brown-tawny, f<strong>in</strong>ely warty-gra<strong>in</strong>y <strong>in</strong> humid weather.<br />

GILLS mostly adnate or lightly decurr<strong>en</strong>t, fairly spaced,<br />

wide, salmon p<strong>in</strong>k or red-brownish, with the surface<br />

whole coloured.<br />

STIPE 30-60 × 1-3.5 mm, cyl<strong>in</strong>drical, wid<strong>en</strong><strong>in</strong>g at base,<br />

from full to hollow, covered with f<strong>in</strong>e white fibrils<br />

l<strong>en</strong>gthwise on brown-red background, pru<strong>in</strong>ose to apex,<br />

with mycelium white at base.<br />

FLESH f<strong>in</strong>e, red-brownish, watery. Pleasant odour, sweet<br />

fungus flavour.<br />

Laccaria fraterna (Sacc.) Pegler<br />

MICROSCOPY: spores 8.5-10.5 × 7.0-9.5 µm, from<br />

subglobose to mostly ellipsoidal, ech<strong>in</strong>ulate, hyal<strong>in</strong>e, with<br />

sp<strong>in</strong>es reach<strong>in</strong>g 1 µm <strong>in</strong> l<strong>en</strong>gth; bisporic and monosporic<br />

basidia.<br />

HABITAT: basidiomata, gregarious or cespitose, near<br />

Eucalyptus, P<strong>in</strong>us, Cupressus sp. pl., <strong>in</strong> Mediterranean<br />

<strong>en</strong>vironm<strong>en</strong>t. Summer-autumn.<br />

EDIBILITY: of no value<br />

NOTE - It is almost impossible to determ<strong>in</strong>e a Laccaria<br />

with only the morphological data such as that evid<strong>en</strong>ced<br />

by L. fraterna, to go on without the aid of a microscope.<br />

This species can be recognized by its mostly bisporic<br />

basidia, its spore size, the l<strong>en</strong>gth of its sp<strong>in</strong>es and its<br />

typical Mediterranean habitat.<br />

179


CAP 10-35 (45) mm, <strong>in</strong>itially hemispheric, th<strong>en</strong> convex<br />

ed f<strong>in</strong>ally flat and depressed <strong>in</strong> the c<strong>en</strong>tre; edges striated<br />

for transpar<strong>en</strong>cy, undulated and d<strong>en</strong>ticulate; from brownorange,<br />

brown reddish, to p<strong>in</strong>kish red <strong>in</strong> humid weather,<br />

paler to beige or faded ochre-ish with the dry; matt<br />

surface, smooth, very f<strong>in</strong>e radial fibrils, a little dandruff <strong>in</strong><br />

c<strong>en</strong>tre, hygrophanous.<br />

GILLS mostly adnate or lightly decurr<strong>en</strong>t, wide, spaced;<br />

light flesh colour light at first, th<strong>en</strong> brown-p<strong>in</strong>k, on the<br />

whole surface.<br />

STIPE 35-100 × 3-5 mm, cyl<strong>in</strong>drical, oft<strong>en</strong> slightly<br />

wid<strong>en</strong>ed at base, full th<strong>en</strong> hollow, elastic; surface from<br />

brown-red to brown dirty, smooth or just striated, covered<br />

longitud<strong>in</strong>al with whitish fibrils.<br />

FLESH watery, from brown-grey to whitish, f<strong>in</strong>e; weak<br />

herbal odour; sweet fungus flavour.<br />

180<br />

Laccaria laccata (Scop. : Fr.) Berkeley & Broome<br />

MICROSCOPY: spores from subglobose to ellipsoidal,<br />

hyal<strong>in</strong>e, 8.0-10.0 × 6.5-8.0 µm; sp<strong>in</strong>es 1-2 µm <strong>in</strong> l<strong>en</strong>gth.<br />

basidia clavate, 28-45 × 8-15 µm, tetrasporic, h<strong>in</strong>ged;<br />

l<strong>en</strong>gth of sterigmata up to 10 µm. regular lamellar web.<br />

Cheilocystidia cyl<strong>in</strong>drical, fairly supple, 25-60 × 3-7 µm.<br />

Cuticle formed from parallel hyphae, <strong>in</strong>terwov<strong>en</strong>, width<br />

of 7-15 µm, with some hyphae scattered perp<strong>en</strong>dicularly.<br />

H<strong>in</strong>ges pres<strong>en</strong>t.<br />

HABITAT: isolated or gregarious, <strong>in</strong> hardwood or<br />

coniferous woods or on their outskirts, <strong>in</strong> uncovered<br />

areas, on carpets of needles, among moss<br />

EDIBILITY: of no value<br />

NOTE - L. laccata var. laccata with its small and delicate<br />

carpophores this can be dist<strong>in</strong>guished from other varieties<br />

above all due to its ellipsoidal spores, which have a<br />

l<strong>en</strong>gth/width ratio of over 1-2.


CAP 50-150 mm at start, convex, th<strong>en</strong> flatt<strong>en</strong>ed, f<strong>in</strong>ally<br />

depressed-<strong>in</strong>fundibulform, yellow-orange, orange-ochreish,<br />

with more saturated conc<strong>en</strong>tric zone, edges<br />

convoluted, th<strong>en</strong> more or less undulated-lobed, hairless<br />

surface, a little viscous <strong>in</strong> humid weather, th<strong>en</strong> dry,<br />

pru<strong>in</strong>ose, more clear at edges.<br />

GILLS lightly decurr<strong>en</strong>t, crowded, rigid, forked, pale<br />

orange th<strong>en</strong> carrot red <strong>in</strong> fractures, f<strong>in</strong>ally, very slowly,<br />

dirty gre<strong>en</strong>ish.<br />

STIPE 30-60 × 15-25 mm, filled th<strong>en</strong> hollow, pru<strong>in</strong>osefelted,<br />

pale orange, more or less bear<strong>in</strong>g red-orange<br />

dimples.<br />

FLESH pale, carrot red <strong>in</strong> fractures to the latex, th<strong>en</strong> very<br />

slowly becom<strong>in</strong>g gre<strong>en</strong>ish (<strong>in</strong> 24 ore), with fruity odour<br />

and mild flavour.<br />

LATEX: carrot red, uniform or pal<strong>in</strong>g, with mild flavour.<br />

Lactarius deliciosus (L. : Fr.) S.F. Gray<br />

MICROSCOPY: spores from mostly ellipsoidal to<br />

ellipsoidal, 8.1-10.3 × 6.5-8.0 µm, with warts jo<strong>in</strong>t with<br />

fairly thick ridges, form<strong>in</strong>g an almost complete lattice;<br />

tetrasporophyte basidia, subclavate; Pileipellis, an<br />

ixocutis is pres<strong>en</strong>t<br />

HABITAT: exclusively associated with P<strong>in</strong>us; frequ<strong>en</strong>t <strong>in</strong><br />

p<strong>in</strong>e. From summer to the first signs of w<strong>in</strong>ter.<br />

EDIBILITY: edible<br />

NOTE - Of those species which associate with conifers<br />

and have orange or red latex, L. deliciosus is easily<br />

recognisable by its cap with orange-ochre-ish patches, its<br />

stipe covered with red-orange dimples, its unchang<strong>in</strong>g<br />

latex and its habitat of p<strong>in</strong>e trees. Of the large, edible<br />

milk-caps this one is fairly well known, and, probably, the<br />

one best suited to the d<strong>in</strong>ner table.<br />

181


CAP 30-100 mm, <strong>in</strong>itially convex th<strong>en</strong> flat, f<strong>in</strong>ally<br />

depressed <strong>in</strong> the c<strong>en</strong>tre, vivid orange, th<strong>en</strong> rusty orange,<br />

gre<strong>en</strong><strong>in</strong>g all over with age, not zoned or with crowded<br />

zon<strong>in</strong>g at edges, slightly evid<strong>en</strong>t, rounded edges th<strong>en</strong><br />

op<strong>en</strong>, the surface slightly viscous <strong>in</strong> humid weather, th<strong>en</strong><br />

dry, pru<strong>in</strong>ose-rugulous.<br />

GILLS adnate-decurr<strong>en</strong>t, very crowded, forked, ochreorange-ish,<br />

sta<strong>in</strong>ed gre<strong>en</strong>-brownish <strong>in</strong> fractures.<br />

STIPE 30-60 × 10-25 mm, filled, soon becom<strong>in</strong>g hollow,<br />

concolour with cap, g<strong>en</strong>erally not scrobitulate, pru<strong>in</strong>ose,<br />

bear<strong>in</strong>g a white rim at tip, ev<strong>en</strong>tually gre<strong>en</strong><strong>in</strong>g all over.<br />

FLESH cream-orange, slowly turn<strong>in</strong>g to w<strong>in</strong>ey red, th<strong>en</strong><br />

dark gre<strong>en</strong>, with fruity or carrot like odour and mild or<br />

lightly acrid and bitter flavour. Guaiac, w<strong>in</strong>y grey.<br />

LATEX: slightly abundant, orange, turn<strong>in</strong>g red-w<strong>in</strong>ey <strong>in</strong><br />

15 m<strong>in</strong>utes, with mild flavour, th<strong>en</strong> a little acrid and<br />

bitter.<br />

182<br />

Lactarius deterrimus Gröger<br />

MICROSCOPY: spores from subglobose to mostly<br />

ellipsoidal, 8.0-11.4 × 6.6-8.7 µm, with warts jo<strong>in</strong>ed with<br />

th<strong>in</strong> ridges, form<strong>in</strong>g a very <strong>in</strong>complete lattice;<br />

tetrasporophyte basidia, subclavate; Pileipellis, it has an<br />

ixocutis.<br />

HABITAT: symbiont of Picea abies; highly widespread<br />

and common <strong>in</strong> fir abetaie and red fir; from summer to<br />

late autumn.<br />

EDIBILITY: edible<br />

NOTE - The peculiar characteristics of this species are the<br />

non patchy cap and stipe, though which soon become<br />

sta<strong>in</strong>ed gre<strong>en</strong>. The stipe is not dimpled, though has a<br />

typical white circle at its tip; the latex moves slowly from<br />

orange to w<strong>in</strong>ey red and its habitat is near Picea abies. In<br />

spite of its name, which means “the worst”... it is<br />

considered a good edible, ev<strong>en</strong> if less well-esteemed than<br />

L. deliciosus.


CAP 50-150 mm, <strong>in</strong>itially convex, th<strong>en</strong> flat-depressed,<br />

f<strong>in</strong>ally <strong>in</strong>fundibulform, white-cream, soon becom<strong>in</strong>g<br />

dotted with brown-ochre ones, ev<strong>en</strong>tually with some rusty<br />

shades, the edges are f<strong>in</strong>e and convoluted wh<strong>en</strong> young,<br />

th<strong>en</strong> lobed-undulated, the cuticle is adnate, dry, hairless, a<br />

little rugulous, with the t<strong>en</strong>d<strong>en</strong>cy to crack.<br />

GILLS from adnate-decurr<strong>en</strong>t to slightly decurr<strong>en</strong>t, very<br />

crowded and close, th<strong>in</strong>, with numerous lamellule, white<br />

with pale cream and flesh colour t<strong>in</strong>ges, brownish <strong>in</strong><br />

fractures.<br />

STIPE 60-10 × 15-25 mm, short or slim, cyl<strong>in</strong>drical or<br />

att<strong>en</strong>uated at base, oft<strong>en</strong> ecc<strong>en</strong>tric, full, firm smooth,<br />

white, with dirty cream or brown-ochre-ish sta<strong>in</strong>s from<br />

the base.<br />

FLESH thick, firm, white to gill edge, but soon turn<strong>in</strong>g<br />

cream, with a very acrid flavour and no significant odour.<br />

LATEX: uniformly white if isolated, but lightly yellow<br />

olivish, dry<strong>in</strong>g on the gills, with very peppery flavour.<br />

Lactarius piperatus (Scop. : Fr.) S.F. Gray<br />

MICROSCOPY: spores from subglobose to oblong, 7.2-<br />

10.4 × 5.2-7.5 µm, with warts jo<strong>in</strong>ed <strong>in</strong> ridges and<br />

form<strong>in</strong>g un <strong>in</strong>complete lattice; bisporic or tetrasporic<br />

basidia, subclavate ; Pileipellis, epithelium.<br />

HABITAT: <strong>in</strong> hardwood and coniferous woods, very<br />

common, grows <strong>in</strong> groups, oft<strong>en</strong> early; summerautumn.<br />

EDIBILITY: non edible<br />

NOTE - L. piperatus can be told apart from L.<br />

pergam<strong>en</strong>us by the negative reaction of its latex with<br />

potassium hydroxide and by its gills and flesh which do<br />

not assume grey-gre<strong>en</strong>ish sta<strong>in</strong>s. L. vellereus and similar<br />

species are usually more robust and stubby, and have<br />

spaced out gills; L. controversus, a symbiont of poplar<br />

trees, has decidedly p<strong>in</strong>kish gills.<br />

183


CAP 40-80 mm, from convex to flat-depressed, firm<br />

fleshy, with the edges convoluted at the extremes, th<strong>en</strong><br />

rounded, undulated-lobed, f<strong>in</strong>ely felted. Cuticle lightly<br />

viscous <strong>in</strong> humid weather, th<strong>en</strong> dry, pru<strong>in</strong>ose, slightly<br />

zoned at most, light orange, orange-ochre-ish, orangegrey<strong>in</strong>g,<br />

f<strong>in</strong>ally with non uniform gre<strong>en</strong>ish sta<strong>in</strong>s.<br />

GILLS crowded, th<strong>in</strong>, from adnate to lightly decurr<strong>en</strong>t,<br />

forked, lilac-p<strong>in</strong>kish, grey-lilac-orange, grey- v<strong>in</strong>ous red,<br />

red-brownish <strong>in</strong> fractures th<strong>en</strong> sta<strong>in</strong>ed dark gre<strong>en</strong>.<br />

STIPE 20-40 × 10-20 mm, firm filled, soon becom<strong>in</strong>g<br />

hollow, cyl<strong>in</strong>drical or a little att<strong>en</strong>uated at the base,<br />

pru<strong>in</strong>ose, white-grey<strong>in</strong>g at the summit, p<strong>in</strong>k-violet, p<strong>in</strong>kgreyish,<br />

grey-violet <strong>in</strong> the lower part, smooth or with<br />

small darker dimples<br />

FLESH firm whitish, th<strong>en</strong> brick p<strong>in</strong>k, red-brick. Fruity<br />

odour, mild th<strong>en</strong> lightly bitter flavour.<br />

184<br />

Lactarius sanguifluus (Paulet) Fr.<br />

LATEX slightly abundant, red-v<strong>in</strong>ous, uniform, mild th<strong>en</strong><br />

bitter flavour.<br />

MICROSCOPY: spores 7-9 × 6-7 µm, mostly ellipsoidal,<br />

crested-reticular, with little mesh completely closed.<br />

HABITAT: thermophilic species, grows exclusively<br />

under P<strong>in</strong>us. Summer-autumn.<br />

EDIBILITY: edible<br />

NOTE - A thermophilic species which is fairly common<br />

to maritime p<strong>in</strong>es. It can be recognised by its orangetoned<br />

cap and its lilac-p<strong>in</strong>k gills. It is confusable with<br />

Lactarius v<strong>in</strong>osus Quél., which, however, has a cap with<br />

patches of reddish-violet tones, and gills which are<br />

<strong>in</strong>itially w<strong>in</strong>ey-red to violet, oft<strong>en</strong> with almost total<br />

gre<strong>en</strong><strong>in</strong>g.


CAP 40-110, <strong>in</strong>itially convex th<strong>en</strong> flatt<strong>en</strong>ed, f<strong>in</strong>ally<br />

depressed, more or less umbillicate, viscous if humid, dry<br />

and rough <strong>in</strong> dry weather due to f<strong>in</strong>e, short <strong>in</strong>nate fibrils,<br />

from flesh-p<strong>in</strong>k to p<strong>in</strong>k-orange-reddish, with dark p<strong>in</strong>kreddish<br />

conc<strong>en</strong>tric zon<strong>in</strong>g, the edges are convoluted,<br />

bear<strong>in</strong>g tangled woolly hairs.<br />

GILLS adnate-decurr<strong>en</strong>t, crowded, close, forked, cream<br />

p<strong>in</strong>kish.<br />

STIPE 25-50 (80) × 10-20 mm, full, th<strong>en</strong> hollow, whitishcream,<br />

oft<strong>en</strong> with a p<strong>in</strong>k labrum at tip, oft<strong>en</strong> with some<br />

p<strong>in</strong>kish dimples.<br />

FLESH thick, hard whitish, sometimes with flesh colour<br />

sta<strong>in</strong>s, with fruity or pelargonium odour and very acrid<br />

flavour.<br />

LATEX white, uniform, but slowly yellow<strong>in</strong>g on a tissue<br />

or sheet of white paper.<br />

MICROSCOPY: spores from mostly ellipsoidal to<br />

ellipsoidal, 8.3-9.8 × 6.2-7.5 µm, with warts connect<strong>in</strong>g to<br />

form several closed meshes; tetrasporophyte basidia,<br />

subclavate; pileipellis, an ixocutis is pres<strong>en</strong>t.<br />

Lactarius torm<strong>in</strong>osus (Schaeff. : Fr) S.F. Gray<br />

HABITAT: <strong>in</strong> hardwood areas near birch; fruits from the<br />

<strong>en</strong>d of summer to the <strong>en</strong>d of autumn; fairly common.<br />

NOTE - This can be dist<strong>in</strong>guished from similar species by<br />

its white, uniform latex, its fairly red-p<strong>in</strong>kish and hairyfelt<br />

cap, and by its symbiosis with Betula. L. Pubesc<strong>en</strong>s is<br />

a smaller and nearly white or white-p<strong>in</strong>kish replica. L.<br />

tesquorum and L. mairei, have a more yellowish colour,<br />

and t<strong>en</strong>d to grow <strong>in</strong> more southern climes and are not<br />

l<strong>in</strong>ked to birch trees. Ev<strong>en</strong> if some guidebooks, a little<br />

recklessly perhaps, nom<strong>in</strong>ate this as an edible species,<br />

which it may be after a long cook<strong>in</strong>g time, it is certa<strong>in</strong>ly<br />

poisonous, and causes gastro<strong>in</strong>test<strong>in</strong>al distress. This<br />

characteristic, which is rapidly discovered by those<br />

unfortunate <strong>en</strong>ough to confuse it with the saffron milkcaps<br />

(edible milk-caps with a red or carrot-orange latex),<br />

is the orig<strong>in</strong> of its well-deserved Lat<strong>in</strong> name, mean<strong>in</strong>g<br />

“caus<strong>in</strong>g colic”.<br />

185


CAP 50-120 mm, <strong>in</strong>itially convex, th<strong>en</strong> flat, f<strong>in</strong>ally<br />

depressed, from yellow-reddish to tawny-orange, with the<br />

c<strong>en</strong>tre darker. Adnate, dry, matt, pru<strong>in</strong>ose surface<br />

<strong>in</strong>itially, from smooth to lightly rugulous, velvety<br />

convoluted edges, th<strong>en</strong> dist<strong>en</strong>ded oft<strong>en</strong> cracked radially<br />

wh<strong>en</strong> dry.<br />

GILLS from adnate to a little decurr<strong>en</strong>t, crowded, forked<br />

to stipe, cream, pale yellow-ochre colour, sta<strong>in</strong>ed dark<br />

brown <strong>in</strong> fractures.<br />

STIPE 30-80 (100) × 15-30 mm, firm, full th<strong>en</strong> filled,<br />

pru<strong>in</strong>ose, cyl<strong>in</strong>drical or a little att<strong>en</strong>uated at base,<br />

concolour with cap, but lighter at tip, brown<strong>in</strong>g <strong>in</strong> the<br />

manipulated po<strong>in</strong>ts.<br />

FLESH thick, firm compact, whitish-cream at gill edge,<br />

brown<strong>in</strong>g <strong>in</strong> cap, with an odour characteristic of fish<br />

(herr<strong>in</strong>g).<br />

LATEX: very abundant, d<strong>en</strong>se, white, brownish dry<strong>in</strong>g<br />

wh<strong>en</strong> exposed to air, with a sweet flavour.<br />

186<br />

Lactarius volemus (Fr. : Fr.) Fries<br />

MICROSCOPY: spores from globose to subglobose, 9.2-<br />

11.2 × 8.4-10.6 µm, with clearly jo<strong>in</strong>t warts <strong>in</strong> ridges<br />

form<strong>in</strong>g an almost complete lattice; bisporic or tetrasporic<br />

basidia, subclavate ; pileipellis, epithelium.<br />

HABITAT: mostly hardwood areas, more rarely <strong>in</strong><br />

coniferous areas; not widespread, faithful to its grow<strong>in</strong>g<br />

areas; not very common.<br />

EDIBILITY: edible<br />

NOTE - Apart from its dry cap, L. volemus can be<br />

id<strong>en</strong>tified by its flesh, which has a gre<strong>en</strong>ish reaction to<br />

ferrous sulphate solution, its volum<strong>in</strong>ous latex which<br />

seeps from any cracks <strong>in</strong> its sk<strong>in</strong>, and its characteristic<br />

odour of herr<strong>in</strong>gs (very similar to that ev<strong>in</strong>ced by the<br />

Russula <strong>in</strong> the amo<strong>en</strong>a group). It is edible, though<br />

appreciated by all, and is best cooked on the grill so as to<br />

preserve a vaguely smoky aftertaste.


Langermannia gigantea (Batsch : Pers.) Rostkovius<br />

BASIDIOCARP prosurface is globular, to irregularly<br />

roundish, with a circumfer<strong>en</strong>ce rang<strong>in</strong>g 50 to 600 mm<br />

and, <strong>in</strong> exceptional cases, can reach ev<strong>en</strong> more<br />

remarkable dim<strong>en</strong>sions. Sessile, with sterile radiciform<br />

base.<br />

EXOPERIDIUM formed from a s<strong>in</strong>gle layer to a white<br />

and velvety, smooth th<strong>en</strong> yellowish-cream bark; at<br />

maturity tears <strong>in</strong>to irregular strips, fairly coarse, leav<strong>in</strong>g<br />

the f<strong>in</strong>e <strong>en</strong>doperidium free, whitish, th<strong>en</strong> grey<strong>in</strong>g-sooty or<br />

grey-brown-ochre-ish, of papyrus consist<strong>en</strong>cy, friable,<br />

gradually dehisc<strong>en</strong>t due to erosion, start<strong>in</strong>g from the<br />

summit.<br />

GLEBE white, firm and compact wh<strong>en</strong> young, with<br />

weak, fungal odour and pleasant flavour, th<strong>en</strong> soggy,<br />

from yellow-ochre to brown-olivish, powdery <strong>in</strong> maturity.<br />

MICROSCOPY: spores spherical or mostly ellipsoidal,<br />

3.6-5.6 µm, with short, f<strong>in</strong>ely warty peduncle. Brownish<br />

spores.<br />

HABITAT: <strong>in</strong> grassy areas, <strong>in</strong> pastures, grown <strong>in</strong> parks<br />

and gard<strong>en</strong>s, from the <strong>en</strong>d of summer throughout autumn.<br />

Solitary, gregarious. Infrequ<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - This mushroom is spectacular for the sizes it can<br />

atta<strong>in</strong> and there are reports of specim<strong>en</strong>s over a metre <strong>in</strong><br />

diameter and which have achieved the considerable<br />

weight of 20-25 kg. Species <strong>in</strong> the g<strong>en</strong>us Calvatia, which<br />

have an exoperidium <strong>in</strong> two layers, can also achieve<br />

considerable size, among them, C. lilac<strong>in</strong>a, which is<br />

coloured pale brownish-purple, prefers cultivated soil or<br />

footpaths, while C. utriformis, a white species whose<br />

exoperidium is ornam<strong>en</strong>ted with pyramidal warts, t<strong>en</strong>ds to<br />

grow <strong>in</strong> alp<strong>in</strong>e pastures.<br />

187


188<br />

Lecc<strong>in</strong>um aurantiacum (Bulliard) S.F. Gray ss. Pilát<br />

CAP 40-120 (150) mm, subglobular, th<strong>en</strong> tightly<br />

parabolic, marg<strong>in</strong> f<strong>in</strong>ally dist<strong>en</strong>ded regularly, visibly<br />

hang<strong>in</strong>g from excess of cuticle; f<strong>in</strong>ely velvety-felted,<br />

sometimes with adnate scales, just greasy <strong>in</strong> humid<br />

weather; uniformly red, red-orange, red-tawny,<br />

decolour<strong>in</strong>g to brick or to yellow orange at maturity, dry.<br />

TUBES rounded-depressed or almost free to stipe, tall,<br />

ev<strong>en</strong> beyond 30 mm; grey-whitish, th<strong>en</strong> grey, grey<br />

gre<strong>en</strong>ish dirty due to the maturation of spores, dark grey<br />

at gill edge, th<strong>en</strong> through a temporary violet colour. Very<br />

small, round pores,, concolour with tubes; sta<strong>in</strong><strong>in</strong>g grey<br />

brownish to the touch.<br />

STIPE 60-130 (150) × 15-30 (45) mm, progressively<br />

att<strong>en</strong>uated towards tip; whitish, thickly covered with<br />

scales becom<strong>in</strong>g more crowded and coarse towards the<br />

base, <strong>in</strong>itially white, th<strong>en</strong> becom<strong>in</strong>g darker brownreddish,,<br />

almost black <strong>in</strong> old age or to the touch; basal<br />

area is oft<strong>en</strong> sta<strong>in</strong>ed with a gre<strong>en</strong>-blue colour. Quickly<br />

becom<strong>in</strong>g more woody-fibrous <strong>in</strong> consist<strong>en</strong>cy, full.<br />

FLESH fairly firm <strong>in</strong> cap, very fibrous <strong>in</strong> stipe; whitish,<br />

slowly turn<strong>in</strong>g grey-lilac, th<strong>en</strong> dirty violet, f<strong>in</strong>ally orange<br />

subtle, <strong>in</strong>significant odour and flavourful.<br />

MICROSCOPY: fusiform spores 13.5-16 × 3.8-5 µm,<br />

light brown under microscope; grey brownish olive <strong>in</strong><br />

mass.<br />

HABITAT: <strong>in</strong> humid woods, associated with Populus<br />

tremula, <strong>in</strong> summer-autumn, recurr<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - This is the most common of the ”porc<strong>in</strong>elli<br />

rossi”, (“little red porc<strong>in</strong>es”). It is very easy, however, to<br />

confuse it with the other red Lecc<strong>in</strong>ums: L. querc<strong>in</strong>um,<br />

which is bulkier, has more precociously coloured reddish<br />

scales, and associates with other hardwoods than Populus;<br />

L. vulp<strong>in</strong>um and L. pice<strong>in</strong>um are symbionts of conifers.<br />

L. versipelle is orange and is a symbiont of Betula. In our<br />

own gather<strong>in</strong>g fieldwork we oft<strong>en</strong> had the impression that<br />

the correlations betwe<strong>en</strong> carpophore characteristics as<br />

described <strong>in</strong> literature and symbiosis with host plants does<br />

not always follow precise rules, but rather prefer<strong>en</strong>tial<br />

t<strong>en</strong>d<strong>en</strong>cies.


CAP 50-125 mm, <strong>in</strong>itially convex, th<strong>en</strong> obtusely conical<br />

and f<strong>in</strong>ally flat, sometimes with large umbo; convoluted<br />

marg<strong>in</strong>, sometimes a little affected, curv<strong>in</strong>g towards the<br />

base at the extremes, dist<strong>en</strong>ded s<strong>in</strong>uated-undulated late<br />

on; smooth, matt surface, slightly greasy <strong>in</strong> humid<br />

weather; violet, lilac, blueish colour, t<strong>en</strong>d<strong>en</strong>cy to become<br />

brown tawny mostly towards the c<strong>en</strong>tre of the cap,<br />

decolour<strong>in</strong>g to ochre-ish-violet or ochre-ish-p<strong>in</strong>kish with<br />

age.<br />

GILLS adnate-unc<strong>in</strong>ate or just decurr<strong>en</strong>t, crowded and<br />

with numerous wide lamellule; grey-lilac, lilac blueish<br />

colour, th<strong>en</strong> with brownish tones.<br />

STIPE 50 –90 × 15-30 mm, cyl<strong>in</strong>drical or wid<strong>en</strong><strong>in</strong>g<br />

towards the base, clavate, sometimes bulbous; base is rich<br />

with mycelial residues which typically <strong>en</strong>compass the<br />

substrate wh<strong>en</strong> the carpophore is picked; fibrous and<br />

elastic; lilac, lilac-grey-violet, violet colour, covered with<br />

a white fluff especially at the tip.<br />

FLESH firm, soon becom<strong>in</strong>g soft and a little watery; light<br />

grey colour, with violet tones; odour is characteristically<br />

strong, aromatic, hot and <strong>in</strong>def<strong>in</strong>able.<br />

Lepista nuda (Bull. : Fr.) Cooke<br />

MICROSCOPY: ellipsoidal, lightly warty spores,<br />

dim<strong>en</strong>sions 7-8.5 × 3.5-5 µm; salmon p<strong>in</strong>k <strong>in</strong> mass.<br />

HABITAT: ubiquitous, on the substrate humus of plants,<br />

<strong>in</strong> large groups, oft<strong>en</strong> <strong>in</strong> l<strong>in</strong>es or circles; from autumn to<br />

w<strong>in</strong>ter, oft<strong>en</strong> ev<strong>en</strong> <strong>in</strong> spr<strong>in</strong>g.<br />

EDIBILITY: edible<br />

NOTE - This is a sought-after edible with a delicate<br />

aroma. It can be confused with L. sordida, which is<br />

slightly th<strong>in</strong>ner and usually has a more <strong>in</strong>t<strong>en</strong>se and “dirty”<br />

colour, border<strong>in</strong>g on violet-dark grey. A L. nuda var.<br />

lilacea has be<strong>en</strong> described, bear<strong>in</strong>g <strong>in</strong>t<strong>en</strong>se violet<br />

colour<strong>in</strong>g all over, with a slightly smaller body. L.<br />

glaucocana has a much paler cap, t<strong>en</strong>d<strong>in</strong>g toward lilacgrey,<br />

and has a weaker and less-pleasant odour. L.<br />

personata is very similar to L. nuda, but comb<strong>in</strong>es a<br />

grey<strong>in</strong>g, white-coffee coloured cap with a lovely violet<br />

stipe. Several other <strong>mushrooms</strong> can display a g<strong>en</strong>eral<br />

blue-violet colouration, (e.g.: Cort<strong>in</strong>arius violaceus and<br />

Entoloma bloxamii) but also have vary<strong>in</strong>g g<strong>en</strong>eric<br />

characteristics; (see their respective g<strong>en</strong>us descriptions).<br />

189


BASIDIOCARP high 30-80 mm, 20-60 mm <strong>in</strong> diameter,<br />

subglobular, obvoid or piriform. Exoperidium formed<br />

from d<strong>en</strong>se converg<strong>in</strong>g sp<strong>in</strong>es and composites, width of 3-<br />

6 mm, <strong>in</strong>itially white, th<strong>en</strong> dark brown, which can be<br />

removed fairly easily leav<strong>in</strong>g a reticulated <strong>en</strong>doperidium.<br />

Endoperidium is, light brown papyrus.<br />

GLEBE from grey-brown violet to chocolate brown, with<br />

an <strong>in</strong>dist<strong>in</strong>ct pseudocolumella. Areolated subglebe, with<br />

various brown and lilac sta<strong>in</strong>s.<br />

MICROSCOPY: globose spores, 4.0-5.0 µm, warty. Light<br />

brown, elastic scalp, with small rounded pores, fairly<br />

numerous. Para-capitulum is abs<strong>en</strong>t. Exoperidium has<br />

large irregularly shaped thick walled spherocytes, dark<br />

190<br />

Lycoperdon ech<strong>in</strong>atum Pers. : Pers.<br />

brown. Spore powder is chocolate brown or with lilac<br />

tones.<br />

HABITAT: solitary or <strong>in</strong> small groups, <strong>in</strong> calcerous soil,<br />

ma<strong>in</strong>ly <strong>in</strong> beech woods.<br />

EDIBILITY: edible<br />

NOTE - This is a very-easily recognisable species thanks<br />

to the <strong>en</strong>tirety of its morphological features. Wh<strong>en</strong> found<br />

<strong>in</strong> forests of chestnut trees it is ev<strong>en</strong> likely to be tak<strong>en</strong> for<br />

a chestnut shell! Lycoperdon foetidum also possesses a<br />

brownish exoperidium and a reticulated <strong>en</strong>doperidium<br />

after its sp<strong>in</strong>es have dropped, but these are significantly<br />

shorter; L. umbr<strong>in</strong>um and L. molle too display a brownish<br />

exoperidium but their <strong>en</strong>doperidia are smooth.


BASIDIOCARP height from 30-90 mm, 20-40 mm <strong>in</strong><br />

diameter, subglobose, piriform, subcyl<strong>in</strong>drical or almost<br />

pestle shaped, white, from cream to light brown.<br />

Exoperidium is formed from conical sp<strong>in</strong>es, l<strong>en</strong>gth of 1-2<br />

mm, fragile, whitish or cream, th<strong>en</strong> light brown,<br />

surrounded with a circular row of more persist<strong>en</strong>t sp<strong>in</strong>es.<br />

Wh<strong>en</strong> the sp<strong>in</strong>es fall, they move apart to form a<br />

characteristic polygonal grid pattern on the <strong>en</strong>doperidium.<br />

Endoperidium is, grey-brown papyrus.<br />

GLEBE white, th<strong>en</strong> brown or olivish brown, with a well<br />

developed pseudocolumella. Subglebe is strongly<br />

developed, cellular, from olivish brown to grey-brown.<br />

MICROSCOPY: globose spores, 3.5-4.5 µm, warty. Scalp<br />

is yellow-brown, formed from hyphae sized 3-8 µm, with<br />

relatively th<strong>in</strong> walls; fairly numerous pores.<br />

Paracapitulum, usually abundant. Exoperidium has f<strong>in</strong>e<br />

Lycoperdon perlatum Pers. : Pers.<br />

[= L. gemmatum Batsch]<br />

walled spherocytes of 20-30 µm,. Spore powder is<br />

yellow-brown, olivish brown or grey-brown.<br />

HABITAT: ubiquitous, <strong>in</strong> hardwood and coniferous areas.<br />

EDIBILITY: edible<br />

NOTE - On a macroscopic level, L. perlatum can be<br />

id<strong>en</strong>tified by the shape of its basidiocarp and by the<br />

characteristics of its exoperidium, and microscopically, by<br />

its small spores. Occasionally it can be found on dead<br />

wood but confusion with Lycoperdon piriforme is highly<br />

unlikely. This latter displays, <strong>in</strong> fact, white glebae ev<strong>en</strong> at<br />

maturity and after shedd<strong>in</strong>g its exoperidium, its<br />

<strong>en</strong>doperidium has a smooth appearance. L. nigresc<strong>en</strong>s has<br />

darker and more-persist<strong>en</strong>t sp<strong>in</strong>es plus larger and lessornam<strong>en</strong>ted<br />

spores.<br />

191


BASIDIOCARP height 15-60 mm, piriform, clavate,<br />

rarely subglobose, connected by thick white rhizoids.<br />

Dehisc<strong>en</strong>ce comes through a fairly wide, op<strong>en</strong> operculum.<br />

Exoperidium is white, th<strong>en</strong> fairly dark brown, wartygranular,<br />

with adpressed scales, soon becom<strong>in</strong>g hairless at<br />

tip. Endoperidium is papyrus colour and matt.<br />

GLEBE with dist<strong>in</strong>ctive pseudocolumella, white th<strong>en</strong><br />

olivish, f<strong>in</strong>ally grey-brown, with a strong unpleasant<br />

odour and sweet flavour. Subglebe is firm and areolate<br />

which rema<strong>in</strong>s white.<br />

MICROSCOPY: globose spores, 3.5-4.0 µm, almost<br />

smooth. Capitulum is brown, elastic, not pored, largo 3-<br />

192<br />

Lycoperdon pyriforme Schaeff. : Pers.<br />

7.5 µm, with thick walls 0.7-1.0 µm. Paracapitulum is<br />

abundant. Exoperidium has large sp<strong>in</strong>yspherocytes, walls<br />

thick, irregular shape. Spore powder is olive brown.<br />

HABITAT: <strong>in</strong> large groups on decay<strong>in</strong>g wood, oft<strong>en</strong> on<br />

burnt wood, <strong>in</strong> woods, parks and gard<strong>en</strong>s.<br />

EDIBILITY: edible<br />

NOTE – Very easy to recognise, by its lignicole habits,<br />

floury, <strong>in</strong>consist<strong>en</strong>t exoperidium, its cespitose growth,<br />

and its uniform, white subgleba.


CAP 50-70 mm, hemispheric, convex, th<strong>en</strong> flat, oft<strong>en</strong><br />

with large obtuse umbo, the marg<strong>in</strong> is oft<strong>en</strong> lobed and<br />

undulated, fairly convoluted, th<strong>en</strong> dist<strong>en</strong>ded. Cuticle is<br />

smooth or fibrillated radially, sh<strong>in</strong>y, lardaceous to the<br />

touch <strong>in</strong> humid weather, brown-grey, dark brown-ochre,<br />

with the edge lighter, oft<strong>en</strong> almost whitish.<br />

GILLS adnate or unc<strong>in</strong>ate, fairly crowded, relatively<br />

close, from whitish to cream, oft<strong>en</strong> sta<strong>in</strong>ed p<strong>in</strong>k.<br />

STIPE 30-120 × 8-20 mm, from cyl<strong>in</strong>drical to clavate,<br />

full, elastic-fibrous, whitish, fibrillated with the tip<br />

covered with a white bloom.<br />

FLESH elastic, whitish, with fungal odour and sweet<br />

flavour.<br />

MICROSCOPY: spores 5.5-7 × 5.0-6.5 µm, subglobose,<br />

smooth, hyal<strong>in</strong>e; tetrasporophyte basidia, clavate, with<br />

siderophile granulation; epicyte formed from fairly<br />

Lyophyllum decastes (Fr. : Fr.) S<strong>in</strong>g.<br />

[= Lyophyllum aggregatum (Schaeffer) Kühner]<br />

parallel, braided hyphae, with pigm<strong>en</strong>t partially brownish,<br />

h<strong>in</strong>ged.<br />

HABITAT: grows g<strong>en</strong>erally collated and <strong>in</strong> groups or <strong>in</strong><br />

circles <strong>in</strong> hardwood and conifer woods, especially <strong>in</strong> op<strong>en</strong><br />

areas, at the edges of paths, <strong>in</strong> parks or <strong>in</strong> gard<strong>en</strong>s among<br />

grass.<br />

EDIBILITY: edible<br />

NOTE - The species <strong>in</strong> the section Difformia with<br />

tricholomatoid silhouette, brownish-grey colours and<br />

globose spores, constitute a fairly homog<strong>en</strong>ous group of<br />

species, sometimes difficult to categorise. Wh<strong>en</strong> the<br />

carpophores are connate at the base, but not branch<strong>in</strong>g,<br />

and their growth is not cespitose th<strong>en</strong> we are look<strong>in</strong>g at<br />

either L. decastes or L. loricatum. The former has a f<strong>in</strong>ely<br />

fibrillated, relatively th<strong>in</strong> cuticle, the while the latter has<br />

a thick, t<strong>en</strong>acious, glabrous cuticle.<br />

193


CAP 100-250 mm, <strong>in</strong>itially spherical, ovoid, th<strong>en</strong><br />

hemispheric-campanulate, f<strong>in</strong>ally flat, with large obtuse<br />

umbo, the cuticle is decorated with conc<strong>en</strong>tric plical<br />

scales, hazelnut ochre-ish <strong>in</strong> colour, oft<strong>en</strong> fairly brownish<br />

or reddish, on a light background, the marg<strong>in</strong> is large and<br />

fr<strong>in</strong>ged.<br />

GILLS free, crowded, white th<strong>en</strong> ochre.<br />

STIPE up to 200-350 (500) × 10-20 mm, slim,<br />

cyl<strong>in</strong>drical, with base dilated to form a clear bulb, filled,<br />

th<strong>en</strong> hollow, bear<strong>in</strong>g mottled brownish bands which leave<br />

h<strong>in</strong>ts of the cream flesh below, subsmooth above the<br />

annulus. Double annulus, mobile, whitish externally, with<br />

the lower leaf brownish.<br />

FLESH white, uniform, with pleasant fungal odour,, and<br />

hazelnut flavour.<br />

194<br />

Macrolepiota procera (Scop. : Fr.) S<strong>in</strong>ger<br />

MICROSCOPY: ellipsoidal smooth, hyal<strong>in</strong>e spores, with<br />

germ<strong>in</strong>at<strong>in</strong>g pores, 12.5-17.8 × 8.5-11 µm. clavate,<br />

tetrasporic basidia. Polycystidea is abs<strong>en</strong>t. Cheilocystidia<br />

clavate. Epicyte formed from trichoderma. Partially<br />

dom<strong>in</strong>ant pigm<strong>en</strong>t. Rarely jo<strong>in</strong>t at h<strong>in</strong>ges.<br />

HABITAT: isolated or gregarious <strong>in</strong> hardwood and<br />

conifer woods or <strong>in</strong> meadows; very widespread and<br />

common, from summer throughout autumn.<br />

EDIBILITY: edible<br />

NOTE - By its antonomasia, this is the “drumstick”, a<br />

high-quality, much-sought edible. It is easy to id<strong>en</strong>tify,<br />

just look for its large size and outl<strong>in</strong>e which expla<strong>in</strong> its<br />

German name, mean<strong>in</strong>g “parasol”, its stripy stipe and its<br />

characteristic, movable double annulus.


CAP 80-150 mm, <strong>in</strong>itially campanulate, th<strong>en</strong> convex,<br />

f<strong>in</strong>ally flat, the cuticle is excoriated up to the<br />

circumfer<strong>en</strong>ce with wide, coarse, crowded, overlapp<strong>in</strong>g<br />

scales, fairly light brownish <strong>in</strong> colour, with a fairly tight<br />

c<strong>en</strong>tral cap, of colour brown reddish.<br />

GILLS free, whitish, cream, th<strong>en</strong> dirty p<strong>in</strong>k, redd<strong>en</strong><strong>in</strong>g<br />

wh<strong>en</strong> rubbed, with a floccose surface.<br />

STIPE 100-160 × 10-15 mm, stocky, cyl<strong>in</strong>drical,<br />

progressively dilated to form a bulbous submarg<strong>in</strong>ated<br />

bulb, hollow, smooth, white, gradually brown-reddish<br />

with time or wh<strong>en</strong> rubbed. Annulus is membranous,<br />

robust, whitish, mobile.<br />

FLESH white, turn<strong>in</strong>g orange vivid at gill edge, th<strong>en</strong> to<br />

red-v<strong>in</strong>ous, with an odour of raw potato and sweet<br />

hazelnut flavour.<br />

MICROSCOPY: ellipsoidal or ovoid, smooth, hyal<strong>in</strong>e,<br />

with germ<strong>in</strong>at<strong>in</strong>g pores, 8.8-11.2 × 6.8-8.0 µm. clavate,<br />

tetrasporic basidia. Polycystidea is abs<strong>en</strong>t. Cheilocystidia<br />

clavate or piriform. Epicyte formed from a trichoderma of<br />

Macrolepiota rhacodes (Vittad<strong>in</strong>i) S<strong>in</strong>ger<br />

fairly erect hyphae. Membranous brown pigm<strong>en</strong>t. Jo<strong>in</strong>t at<br />

h<strong>in</strong>ges.<br />

HABITAT: isolated or gregarious, <strong>in</strong> parks, gard<strong>en</strong>s, and<br />

also <strong>in</strong> the woods, mostly of mixed conifers. from the <strong>en</strong>d<br />

of summer to autumn, recurr<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - M. rhacodes is characterised by its peculiar pileic<br />

scal<strong>in</strong>g, which is formed of tortoiseshell scales,<br />

concolour with the cap background, and above all for its<br />

redd<strong>en</strong><strong>in</strong>g flesh. The variety, bohemica differs by hav<strong>in</strong>g<br />

scales of a differ<strong>en</strong>t colour to those of its background and<br />

for its habitat on the periphery of woodlands. M.<br />

v<strong>en</strong><strong>en</strong>ata, heavily toxic, can be dist<strong>in</strong>guished by the radial<br />

arrangem<strong>en</strong>t of its pileic scales and by the total abs<strong>en</strong>ce<br />

of jo<strong>in</strong>t h<strong>in</strong>ges, a characteristic which is <strong>in</strong>credibly<br />

difficult to verify. Therefore, <strong>in</strong> case of doubt, one would<br />

be best advised to avoid consum<strong>in</strong>g any Macrolepiota<br />

with redd<strong>en</strong><strong>in</strong>g flesh.<br />

195


CAP 20-50 mm <strong>in</strong> diameter, <strong>in</strong>itially hemispheric,<br />

campanulate, th<strong>en</strong> flat, umbonate <strong>in</strong> the c<strong>en</strong>tre, the marg<strong>in</strong><br />

is acute, smooth, oft<strong>en</strong> lightly cr<strong>en</strong>ulated, the surface is<br />

smooth, hygrophanous, from orange-ochre to brownish<br />

with humid weather, but light cream-hazelnut wh<strong>en</strong> dry,<br />

spaced, <strong>in</strong>terspersed from lamellule, s<strong>in</strong>uous, wide, from<br />

whitish to cream.<br />

STIPE 30-70 (100) × 3-5 mm, full, cyl<strong>in</strong>drical, oft<strong>en</strong> a<br />

little wid<strong>en</strong>ed at the two extremities, slim, t<strong>en</strong>aciouselastic,<br />

whitish dirty-cream at tip, brownish on the lower<br />

part, from f<strong>in</strong>ely pru<strong>in</strong>ose to velvety for the whole l<strong>en</strong>gth,<br />

with brownish mycelium.<br />

FLESH whitish, elastic, f<strong>in</strong>e, hygrophanous, with a<br />

characteristic odour, like almonds, and sweet hazelnut<br />

flavour.<br />

196<br />

Marasmius oreades (Bolt. : Fr.) Fries<br />

MICROSCOPY: spores from ellipsoidal, fairly elongated,<br />

to amygdalform, (7.0) 8.0-10.5 (11.5) µm;<br />

tetrasporophyte basidia, tightly clavate; pileipellis<br />

hym<strong>en</strong>iform. H<strong>in</strong>ges pres<strong>en</strong>t.<br />

HABITAT: <strong>in</strong> meadows, <strong>in</strong> large groups found <strong>in</strong> l<strong>in</strong>es or<br />

circles; from the spr<strong>in</strong>g throughout autumn.<br />

EDIBILITY: edible<br />

NOTE - This, fairly common mushroom, grows<br />

abundantly, from the spr<strong>in</strong>g to autumn, <strong>in</strong> meadows,<br />

form<strong>in</strong>g “witches’ circles”. It is a choice edible, much<br />

sought after by collectors and can be stored and eat<strong>en</strong> dry.<br />

M. coll<strong>in</strong>us (regard<strong>in</strong>g whose edibility there are some<br />

doubts), is very similar, though can be told apart by its<br />

sl<strong>en</strong>der, smooth stipe and crowded gills.


BASIDIOCARP pileate, devoid of or with rudim<strong>en</strong>tary<br />

stipe, reduced to a po<strong>in</strong>t of attachm<strong>en</strong>t on the cap.<br />

CAP of width up to 300 mm, depth of 10-20 mm and<br />

projection of around 100-150 mm; irregularly circular<br />

shape to gill edge, with several <strong>in</strong>dividuals around a<br />

common base. Surface plicea is undulated, brown or<br />

brown-reddish, markedly zoned, rough due to the<br />

pres<strong>en</strong>ce of adpressed flakes. undulated marg<strong>in</strong>, complete.<br />

HYMENOPHORE tubes and pores, follow the tr<strong>en</strong>d of<br />

the undulated surface plicea. Tubes about 15 <strong>in</strong> thickness<br />

mm, monolayer, from whitish to dark ochre-ish,<br />

black<strong>en</strong><strong>in</strong>g if handled. pores 0.2-0.3 mm <strong>in</strong> diameter,<br />

round.<br />

FLESH fibrous and t<strong>en</strong>acious, but not hard (<strong>in</strong> the context<br />

of a monomorphic constitution), cream white, with fungal<br />

odour and sweetish flavour.<br />

MICROSCOPY: spores subglobose, <strong>in</strong> the shape of<br />

chestnuts, monoguttulate, not amyloid, smooth and<br />

hyal<strong>in</strong>e, dim<strong>en</strong>sions 5.5-6.5 × 4.5-5.5 µm; basidia 20-25<br />

(45) × 5-10 µm, cyl<strong>in</strong>drical-claviform, tetrasporic,<br />

without jo<strong>in</strong>ts at basal h<strong>in</strong>ge; cystidia abs<strong>en</strong>t.<br />

Meripilus giganteus (Pers. : Fr.) P. Karst<strong>en</strong><br />

[= Polyporus giganteus Pers. : Fr.]<br />

HABITAT: saprophyte or parasitic to conifer or Fagus<br />

trees, <strong>in</strong> thick groups with specim<strong>en</strong>s overlapp<strong>in</strong>g, from<br />

summer to autumn; not widespread.<br />

NOTE - At first sight this is liable to be confused with<br />

Polyporus squamosus, as it grows exclusively on<br />

hardwood trunks, the latter, however, has a very scaly cap<br />

surface and larger, angular pores; it is also marked out by<br />

its strong odour of cucumber, especially <strong>in</strong> the younger<br />

specim<strong>en</strong>s.<br />

The patchy appearance of the cap surface Meripilus<br />

giganteus is common also to several species of Trametes,<br />

as is their leathery consist<strong>en</strong>cy due to its trimeric hyphal<br />

structure; of these the ones which spr<strong>in</strong>g to m<strong>in</strong>d are, <strong>in</strong><br />

particular, T. zonatella and T. versicolor, the former<br />

hav<strong>in</strong>g a creamy ochre-ish-brown colour, the latter be<strong>in</strong>g<br />

<strong>in</strong>stead grey-brown, or with decidedly blueish tones. Both<br />

produce cyl<strong>in</strong>drical-allantois spores and prefer to live on<br />

brok<strong>en</strong> hardwood substrates.<br />

197


ASCOCARP pileate and stipitate, of 120-130 mm <strong>in</strong><br />

height and 40-45 mm <strong>in</strong> diameter.<br />

MITRA elongated-conical, with slightly po<strong>in</strong>ted tip, with<br />

alveoli clearly separated from <strong>in</strong>tersection of l<strong>en</strong>gthwise<br />

and transversal ribs arranged parallel to them.<br />

HYMENOPHORE found on all exposed parts of the<br />

mitra, smooth, brick-brown colour, which black<strong>en</strong>s on the<br />

ribs with age. Edge is regular, separated from the stipe by<br />

a vallecula.<br />

STIPE subcyl<strong>in</strong>drical, sometimes swoll<strong>en</strong> at base, rarely<br />

furrowed, rough, white suffused with p<strong>in</strong>kish tones,<br />

hollow or filled <strong>in</strong>ternally.<br />

FLESH leathery-elastic, whitish, with light spermatic<br />

odour and sweetish flavour.<br />

198<br />

Morchella conica Persoon var. costata V<strong>en</strong>t<strong>en</strong>at<br />

MICROSCOPY: ellipsoidal spores, 19-25 × 12-13 µm,<br />

smooth, with some small guttules arranged on the external<br />

surface of the polar zone, uniseriate <strong>in</strong> asco; asci are<br />

cyl<strong>in</strong>drical, not amyloid, octasporic; slightly cyl<strong>in</strong>drical<br />

paraphyses ext<strong>en</strong>ded at tip, septate and sometimes forked.<br />

HABITAT: s<strong>in</strong>gle or <strong>in</strong> small groups <strong>in</strong> conifer woods, <strong>in</strong><br />

spr<strong>in</strong>g; not common.<br />

EDIBILITY: edible<br />

NOTE - M. conica var. costata can be dist<strong>in</strong>guished from<br />

similar species by its characteristic dark<strong>en</strong>ed parallel ribs,<br />

and also the p<strong>in</strong>kish colouration of its stipe. Its habitat and<br />

microscopic features are not particularly useful <strong>in</strong> its<br />

id<strong>en</strong>tification.


Morchella escul<strong>en</strong>ta (L<strong>in</strong>naeus) Persoon var. escul<strong>en</strong>ta<br />

ASCOCARP pileate and stipitate, up to 100 to 250 mm <strong>in</strong><br />

height and 50-80 mm <strong>in</strong> diameter.<br />

MITRA irregularly ovoid, subspherical, globular, with<br />

longitud<strong>in</strong>al and transversal ribs <strong>in</strong> relief, variably carved<br />

betwe<strong>en</strong> them form<strong>in</strong>g irregularly polygonal alveoli.<br />

Hym<strong>en</strong>ophore is smooth, from yellow cream to light<br />

ochre; edges of the ribs are coloured. <strong>in</strong>sertion to stipe is<br />

without vallecula.<br />

STIPE wid<strong>en</strong>ed at base, sometimes semibulbous, oft<strong>en</strong><br />

partially ruffled, irregularly cyl<strong>in</strong>drical, cream ochre-ish,<br />

granular, <strong>in</strong>ternally cavernous.<br />

FLESH elastic, ochre, with light spermatic odour.<br />

MICROSCOPY: smooth ellipsoidal spores, 18-25 × 14-<br />

16 µm, hyal<strong>in</strong>e under microscope, thick walls, with some<br />

small guttules on the extreme surfaces, monoseriat <strong>in</strong><br />

asco; asci are cyl<strong>in</strong>drical, not amyloid, octasporic;<br />

cyl<strong>in</strong>drical clavate paraphyses at tip, septate, simple or<br />

branched.<br />

HABITAT: s<strong>in</strong>gle or <strong>in</strong> small groups on mouldy, sandy<br />

ground to sandy or sandy-clay ground <strong>in</strong> fresh hardwood<br />

areas, under Frax<strong>in</strong>us, Ulmus, Alnus, <strong>in</strong> humid places.<br />

Fairly common, <strong>in</strong> spr<strong>in</strong>g.<br />

EDIBILITY: edible<br />

NOTE - There are some other varieties of M. escul<strong>en</strong>ta,<br />

which can be dist<strong>in</strong>guished by their morphological<br />

features; var. rigid which has a visibly more globular<br />

mitra and is larger (up to 300 mm <strong>in</strong> height); var. vulgaris<br />

which has a conic-elongated mitra, (sometimes) smaller<br />

dim<strong>en</strong>sions (from a m<strong>in</strong>imum of 50 mm <strong>in</strong> height); var.<br />

rotunda which has an oval, subglobular mitra, which, <strong>in</strong><br />

size, can match var. rigid (which is difficult to dist<strong>in</strong>guish<br />

from the latter). Morchella crassipes is very similar to M.<br />

escul<strong>en</strong>ta (of which it may be just a giant variety), has a<br />

conical-rounded ochre-greyish mitra, clavate stipe which<br />

can be as large as 70 mm <strong>in</strong> diameter; Morchella<br />

escul<strong>en</strong>ta var. umbr<strong>in</strong>a, <strong>in</strong>stead, diverges from the usual<br />

appearance by the brown colour of its mitra, which,<br />

however has rib edges which are light ochre-ish. Grows<br />

close to hardwoods such as Fagus or Frax<strong>in</strong>us.<br />

199


200<br />

Morchella escul<strong>en</strong>ta (L.) Persoon var. vulgaris Persoon<br />

ASCOCARP pileate and stipitate, from 80 to 150 mm of<br />

height and 50-60 mm of diameter.<br />

MITRA ovoid-conica, with rounded or subpo<strong>in</strong>ted apex,<br />

with irregular, polygonal or roundish alveoli, deep.<br />

HYMENOPHORE found on the <strong>en</strong>tire visible part of the<br />

mitra, smooth, light brown, whitish on the ribs. Edge is<br />

regular, separated from the stipe by a vallecula.<br />

STIPE subcyl<strong>in</strong>drical, but swoll<strong>en</strong> at base where it is<br />

oft<strong>en</strong> deeply ribbed or furrowed, rough, white-ochre-ish,<br />

filled <strong>in</strong>ternally.<br />

FLESH elastic, whitish, with light spermatic odour and<br />

sweet flavour.<br />

MICROSCOPY: ellipsoidal spores, 19-25 × 12-13 µm,<br />

smooth, with some small guttules arranged on the external<br />

surface of the polar zone, uniseriat <strong>in</strong> asco; asci are<br />

cyl<strong>in</strong>drical, not amyloid, octasporic; paraphyses lightly<br />

cyl<strong>in</strong>drical elongated <strong>in</strong> height.<br />

HABITAT: s<strong>in</strong>gle or <strong>in</strong> small groups near hardwood<br />

trees, especially Ulmus, <strong>in</strong> spr<strong>in</strong>g; not common.<br />

EDIBILITY: edible<br />

NOTE - This is confusable with other species of the same<br />

g<strong>en</strong>us, both for its colour and appearance, which are not<br />

<strong>in</strong>frequ<strong>en</strong>tly <strong>in</strong>flu<strong>en</strong>ced by its growth conditions.. One of<br />

its peculiar characteristics is the colour of its<br />

hym<strong>en</strong>ophore which is light brown <strong>in</strong> contrast to its white<br />

ribs.


ASCOCARP stipitate and pileate, up to 200 mm <strong>in</strong> height<br />

and around 30 <strong>in</strong> diameter.<br />

MITRA conical-po<strong>in</strong>ted, oft<strong>en</strong> rounded, sub-cerebriform,<br />

with longitud<strong>in</strong>al and transversal ribs slightly <strong>in</strong> relief<br />

form<strong>in</strong>g the irregular alveoli. Hym<strong>en</strong>ophore is smooth, of<br />

brown-brick colour, darker on the edges of the ribs.<br />

Lower surface is smooth or m<strong>in</strong>utely rough, white cream.<br />

STIPE slim, subcyl<strong>in</strong>drical, oft<strong>en</strong> ribbed l<strong>en</strong>gthwise,<br />

rough, white cream.<br />

FLESH t<strong>en</strong>acious, elastic, but to con fragile, sweet, with<br />

spermatic odour; white cream colour.<br />

HABITAT: <strong>in</strong> humid places, on sandy or clay-sandy<br />

ground, under trees such as Alnus, Crataegus, Frax<strong>in</strong>us<br />

and Populus, but also <strong>in</strong> v<strong>in</strong>eyards, more rarely under<br />

other hardwood; <strong>in</strong> spr<strong>in</strong>g, <strong>in</strong> groups of several<br />

specim<strong>en</strong>s, recurr<strong>en</strong>t.<br />

MICROSCOPY: ellipsoidal spores, smooth, 20-25 × 14-<br />

17.5 µm, hyal<strong>in</strong>e under microscope, oft<strong>en</strong> with small<br />

Morchella semilibera De Cand. : Fr.<br />

guttules on the external surface at the <strong>en</strong>ds, uniseriat <strong>in</strong><br />

asco; asci are cyl<strong>in</strong>drical, not amyloid, octasporic;<br />

cyl<strong>in</strong>drical paraphyses with wid<strong>en</strong>ed and oft<strong>en</strong> guttural<br />

apex, septate.<br />

EDIBILITY: edible<br />

NOTE - This has <strong>in</strong> the past be<strong>en</strong> considered as part of<br />

another g<strong>en</strong>us, the g<strong>en</strong>us Mitrophora, dist<strong>in</strong>ct from the<br />

Morchella by the way the stipe was <strong>in</strong>serted <strong>in</strong>to the<br />

mitra. In the Mitrophora the vallecula is l<strong>en</strong>gth<strong>en</strong>ed, and<br />

jo<strong>in</strong>s onto the lower surface at around 1/3-2/3 of the<br />

l<strong>en</strong>gth of the mitra itself. Today this differ<strong>en</strong>ce is not held<br />

to be suffici<strong>en</strong>t to warrant ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g two diverse<br />

taxonomic g<strong>en</strong>era.<br />

M. fusca, which is smaller (up to 80 mm <strong>in</strong> height) (and<br />

has spores just 8-9 µm wide) while M. gigas can reach<br />

heights of 200 mm, with a clavate stipe which measures<br />

up to 50 mm at its wide base.<br />

201


CAP 20-50 mm, from fairly campanulate to flat-convex,<br />

with or without an obtuse umbo, hygrophanous, striated to<br />

transpar<strong>en</strong>cy, hairless; pale p<strong>in</strong>k with light lilac sta<strong>in</strong>s.<br />

GILLS 25-30, from asc<strong>en</strong>d<strong>in</strong>g to fairly horizontal, from<br />

adnate to non-marg<strong>in</strong>ated, slight crowded, bulg<strong>in</strong>g, from<br />

smooth to v<strong>en</strong>ous, whitish, suffused with very light violet,<br />

concolour with the surface.<br />

STIPE 40-70 × 3-8 mm, cyl<strong>in</strong>drical, a little wid<strong>en</strong>ed at<br />

base, smooth, hollow, t<strong>en</strong>acious, pru<strong>in</strong>ose at tip, dirty<br />

whitish, suffused with violet, lighter at tip, with base<br />

fairly d<strong>en</strong>sely covered with whitish fibrils.<br />

FLESH f<strong>in</strong>e, whitish, with raphanoid odour and flavour.<br />

MICROSCOPY: ellipsoidal spores, amyloid, 7.0-9.5 ×<br />

3.5-4.5 µm. Tetrasporophyte basidia, clavate, with h<strong>in</strong>ges.<br />

Cheilocystidia is fusiform clavate, fairly elongated,<br />

g<strong>en</strong>erally smooth but covered with sparse diverticula at<br />

the edges of the cap. Pleurocystidia similar. Epicyte<br />

formed from filam<strong>en</strong>tous smooth hyphae, very th<strong>in</strong>.<br />

202<br />

Myc<strong>en</strong>a pura (Pers. : Fr.) Kummer<br />

Hyphae of stipe is smooth, with fusiform or ellipsoidal<br />

caulocystides, smooth.<br />

HABITAT: <strong>in</strong> hardwood and conifer woods, betwe<strong>en</strong><br />

fall<strong>en</strong> needles and leaves; very widespread and frequ<strong>en</strong>t at<br />

every latitude. From the <strong>en</strong>d of spr<strong>in</strong>g.<br />

EDIBILITY: suspect<br />

NOTE - Of all the species belong<strong>in</strong>g to the g<strong>en</strong>us<br />

Myc<strong>en</strong>a, M. pura, with its differ<strong>en</strong>t varieties and forms, is<br />

probably the one which has the widest range of cap<br />

colour<strong>in</strong>g. Follow<strong>in</strong>g the guidel<strong>in</strong>es proposed by Maas<br />

Geesteranus, any taxon’s colour variations should be<br />

considered as mere forms rather than varieties. Among<br />

these we m<strong>en</strong>tion, for example, the completely white fo.<br />

alba, the blue-capped fo. ianth<strong>in</strong>a, which has a h<strong>in</strong>t of<br />

violet or grey, and the fo. lutea which can be id<strong>en</strong>tified by<br />

the yellow colour of its cap but also its pale stipe bear<strong>in</strong>g<br />

just a h<strong>in</strong>t of violet.


CAP 30-50 mm, from conical to campanulate, th<strong>en</strong><br />

convex or flat-convex, mamelon, pale p<strong>in</strong>k, p<strong>in</strong>k-lilac,<br />

sometimes v<strong>in</strong>ous h<strong>in</strong>ts, with the edge lighter,<br />

hygrophanous, smooth, hairless, a little unctuous, striated<br />

to transpar<strong>en</strong>cy.<br />

GILLS 32-36, wide, asc<strong>en</strong>d<strong>in</strong>g, bulg<strong>in</strong>g, adnate or nonmarg<strong>in</strong>ated,<br />

fairly light p<strong>in</strong>k, whitish towards the surface.<br />

STIPE 70-110 × 5-10 mm, cyl<strong>in</strong>drical, hollow, smooth or<br />

covered with very f<strong>in</strong>e fibrils, white, h<strong>in</strong>t of p<strong>in</strong>k.<br />

FLESH white p<strong>in</strong>kish, hygrophanous, with fairly clear<br />

raphanoid odour.<br />

MICROSCOPY: spores mostly ellipsoidal, smooth,<br />

hyal<strong>in</strong>e, amyloid, 7.5-10.2 × 3.8-4.5 µm. basidia clavate<br />

tetrasporic, h<strong>in</strong>ged. Cheilocystidia and pleurocystidia<br />

fusiform, clavate or spherical-p<strong>en</strong>dunculated. Epicyte<br />

Myc<strong>en</strong>a rosea (Bulliard) Gramberg<br />

formed from parallel <strong>in</strong>terwov<strong>en</strong> hyphae, the surface layer<br />

is geleld. H<strong>in</strong>ges pres<strong>en</strong>t.<br />

HABITAT: isolated or gregarious, on decompos<strong>in</strong>g<br />

residues <strong>in</strong> hardwood and of conifer woods; non very<br />

common, fruits preferably <strong>in</strong> autumn.<br />

EDIBILITY: suspect<br />

NOTE - M. rosea belongs to the subsection Purae (Konr.<br />

& Maubl.) Maas G. of section Calodontes (Fr. ex Berk.)<br />

Quélet and differs from M. pura, of which it is oft<strong>en</strong><br />

considered a variety, not only by the colour of its cap,<br />

which is a particular shade of p<strong>in</strong>k, but also by its shape,<br />

which is conical-campanulate at the extremes or<br />

parabolic, and by its more-delicate stipe.<br />

203


BASIDIOCARP <strong>in</strong>itially cont<strong>en</strong>t <strong>in</strong> a whitish peridium,<br />

globular, oft<strong>en</strong> and filled with a gelat<strong>in</strong>ous substance,<br />

external surface is membranous, <strong>in</strong>itially smooth, soon<br />

becom<strong>in</strong>g percolated by elevated ve<strong>in</strong>s; the peridium has<br />

clear mycelial rootlets and the tip tears at maturity to<br />

allow the exit of a phallic receptacle, made from the stipe<br />

and cap.<br />

STIPE 120-210 × 20-35 mm, cyl<strong>in</strong>drical, progressively<br />

tapered at tip, white, fragile and spongy, oft<strong>en</strong> curv<strong>in</strong>g, to<br />

surface thickly dimpled.<br />

CAP vaguely resembl<strong>in</strong>g a mitra, wider <strong>in</strong> diameter than<br />

stipe, honeycombed, shows a round op<strong>en</strong><strong>in</strong>g at tip and<br />

marg<strong>in</strong>; whitish colour but at the covered with a rott<strong>en</strong><br />

gre<strong>en</strong> or olive gre<strong>en</strong> dark mucilage paste at extremes,<br />

which constitutes the glebe and conta<strong>in</strong>s its spores. It is<br />

not unusual for portions of gelat<strong>in</strong>ous peridium to adorn<br />

the summit of the cap. After the dissolution of the<br />

gre<strong>en</strong>ish-whitish glebe, the cap ev<strong>en</strong>tually takes its<br />

cellular-ribbed form.<br />

FLESH fragile <strong>in</strong> cap, fragile and spongy <strong>in</strong> stipe. Odour<br />

at first, until the carpophore is closed with<strong>in</strong> the peridium<br />

204<br />

Phallus impudicus L. : Pers.<br />

is not unpleasant, raphanoid, with a t<strong>en</strong>d<strong>en</strong>cy to smell of<br />

flesh or faeces or with h<strong>in</strong>ts of gorgonzola cheese; very<br />

unpleasant. the odour is noticeable several feet away and<br />

clearly <strong>in</strong>dicates the pres<strong>en</strong>ce of the mushroom ev<strong>en</strong><br />

before it is se<strong>en</strong><br />

MICROSCOPY: ellipsoidal spores, smooth, brownish<br />

under microscope, dim<strong>en</strong>sions: 4-5 × 1-2 µm.<br />

HABITAT: solitary or <strong>in</strong> groups <strong>in</strong> humid recesses dei<br />

woods, oft<strong>en</strong> hidd<strong>en</strong> among the undergrowth and close to<br />

decompos<strong>in</strong>g vegetable residues; not rare.<br />

EDIBILITY: non edible<br />

NOTE - An unmistakeable mushroom with its odour<br />

which recalls fecal or strongly-rott<strong>en</strong> organic matter. An<br />

odour which attracts the flies which are necessary to the<br />

diffusion of its spores. P. hadrianii, which is rarer, is very<br />

similar but has a p<strong>in</strong>k peridium, is slightly smaller and<br />

grows <strong>in</strong> sandy, arid earth. Mut<strong>in</strong>us can<strong>in</strong>us has a moreslant<strong>in</strong>g<br />

stipe which is coloured orange-p<strong>in</strong>k where it<br />

<strong>in</strong>tersects with the cap, which is the same diameter as the<br />

stipe, and is po<strong>in</strong>ted.


CAP: 50-100 (150) mm, convex, th<strong>en</strong> more dist<strong>en</strong>ded<br />

with convoluted marg<strong>in</strong> at the extremes, f<strong>in</strong>ally flat, very<br />

ecc<strong>en</strong>tric, <strong>in</strong> the shape of a fan or a shell, th<strong>in</strong>ned <strong>in</strong> the<br />

marg<strong>in</strong>al zone which is sometimes a little striated;<br />

hairless, greasy-sh<strong>in</strong>y, grey, grey steel blueish, greybrown,<br />

sometimes with fairly violet sta<strong>in</strong>s, cuticle is<br />

separable.<br />

GILLS: very decurr<strong>en</strong>t, not very crowded, with forks<br />

multiple and to various levels, th<strong>in</strong>, unequal, white or<br />

white-silver on whole surface, sometimes pale whitecream.<br />

STIPE: 10-35 × 10-20 mm, sometimes nearly abs<strong>en</strong>t, very<br />

acc<strong>en</strong>tric or lateral, irregularly cyl<strong>in</strong>drical, of pru<strong>in</strong>ose<br />

appearance, white, or slight h<strong>in</strong>t of grey; dry, firm, full.<br />

FLESH: white, abundant <strong>in</strong> correspond<strong>en</strong>ce with stipe<br />

<strong>in</strong>sertion, soon becom<strong>in</strong>g th<strong>in</strong>ned, fairly elastic-t<strong>en</strong>acious,<br />

sub-leathery <strong>in</strong> adults, especially around the stipe; odour<br />

vaguely of mould <strong>in</strong> older specim<strong>en</strong>s, sweet flavour.<br />

Pleurotus ostreatus (Jacq. : Fr.) Kummer<br />

MICROSCOPY: spores tightly ellipsoidal, subcyl<strong>in</strong>drical,<br />

smooth, 8-11.6 × 3.2-4.2 µm.<br />

HABITAT: on liv<strong>in</strong>g or dead wood of various hardwood<br />

trees, <strong>in</strong> woods or <strong>in</strong> parks, numerous examples are found<br />

with overlapp<strong>in</strong>g caps; late autumn or w<strong>in</strong>ter, common <strong>in</strong><br />

grow<strong>in</strong>g areas, but not widespread. Easily cultivated<br />

EDIBILITY: edible<br />

NOTE - There is a variant of this which grows on conifer<br />

trees, the var. columb<strong>in</strong>us, which has a light blue t<strong>in</strong>ge all<br />

over. This species is very well known for the ease with<br />

which they can be cultivated. Very commonly sold, it can<br />

be found on sale <strong>in</strong> all European and most <strong>in</strong>ternational<br />

markets. It also used to be very readily found <strong>in</strong> the wild<br />

too, from meadowlands to the mounta<strong>in</strong>s, but it is<br />

becom<strong>in</strong>g less and less easy to f<strong>in</strong>d them <strong>in</strong> their natural<br />

state. They are a choice edible and almost impossible to<br />

confuse with poisonous species.<br />

205


BASIDIOCARP coralloid, of 80-100 mm <strong>in</strong> width and<br />

50-120 mm of height, verticillated, made from a base up<br />

50 mm wide from which many small branches reach out,<br />

<strong>in</strong> various numbers. The pr<strong>in</strong>cipal branches create a<br />

po<strong>in</strong>ted tip p<strong>in</strong>k v<strong>in</strong>ous <strong>in</strong> colour, which contrast with the<br />

rest of the branches which are white or whitish.<br />

HYMENOPHORE <strong>in</strong>dist<strong>in</strong>ct, found on the smooth<br />

surface of branches and roughly half their height.<br />

FLESH fairly compact but fragile (monomorphic hyphal<br />

structure), white, with pleasant odour and flavour.<br />

MICROSCOPY: spores cyl<strong>in</strong>drical-ellipsoidal, 14-17 ×<br />

4.5-8 µm, with fairly pronounced apiculture, irregularly<br />

furrowed l<strong>en</strong>gthwise, not amyloid, hyal<strong>in</strong>e under<br />

microscope; basidia 45-60 × 9-11 µm, cyl<strong>in</strong>dricalclaviform,<br />

tetrasporic, jo<strong>in</strong>t to h<strong>in</strong>ges at base. Cystidia<br />

abs<strong>en</strong>t.<br />

HABITAT: on the ground <strong>in</strong> hardwood and of conifer<br />

woods, fruits <strong>in</strong> groups which sometimes cover a large<br />

area, <strong>in</strong> summer-autumn; not widespread.<br />

EDIBILITY: edible<br />

206<br />

Ramaria botrytis (Pers. : Fr.) Rick<strong>en</strong><br />

NOTE - Ramaria botrytis has a w<strong>in</strong>ey p<strong>in</strong>k colour which<br />

is commonly found <strong>in</strong> other species such as R.<br />

subbotrytis, <strong>in</strong> which, however one can see hues verg<strong>in</strong>g<br />

on corral p<strong>in</strong>k; this latter has similar-look<strong>in</strong>g carpophores,<br />

fruits <strong>in</strong> hardwood and conifer forests and has smaller,<br />

rough spores, from 8-11 × 3-4 µm. R. holorubella seems<br />

to be a variant found <strong>in</strong> conifer woods, and has a fairlywell<br />

rooted basal trunk which is firmly embedded <strong>in</strong> the<br />

ground. More common is R. rufesc<strong>en</strong>s, always whitereddish,<br />

with a t<strong>en</strong>d<strong>en</strong>cy to yellow at the lower part of its<br />

branches. It has dist<strong>in</strong>ct basal trunk dim<strong>en</strong>sions and can<br />

be found from summer to autumn <strong>in</strong> woodlands. It has<br />

amygdaliform spores, 8-10 × 3,5-4 µm.<br />

R. formosa has basidiocarps with an att<strong>en</strong>uated base with<br />

decreas<strong>in</strong>g branches at the top; these t<strong>en</strong>d to be of three<br />

colours: yellow on the uppermost extremities, salmon<br />

p<strong>in</strong>k on the branches and white at the base. It has are 9-13<br />

× 5-6 µm, warty-crested spores, and lives on the ground<br />

<strong>in</strong> hardwood forests.


BASIDIOCARP <strong>in</strong>itially <strong>in</strong> the shape of a cauliflower,<br />

th<strong>en</strong> coralloid, width of 100-200 mm and height 100-150<br />

mm, fairly verticillated, formed from an irregularly<br />

cyl<strong>in</strong>drical, solid and fairly developed basal trunk from<br />

which numerous branches grow, ev<strong>en</strong>tually fairly long,<br />

and divide further, until <strong>en</strong>d<strong>in</strong>g <strong>in</strong> two short spikes at the<br />

upper <strong>en</strong>d. The branches are yellow or apricot colour<br />

while the trunk is whitish<br />

HYMENOPHORE not dist<strong>in</strong>ct, found on the surface on<br />

the upper half of the branches.<br />

FLESH compact (monomorphic hyphal structure), white,<br />

sometimes marbled, no particular odour and weak,<br />

slightly sour flavour.<br />

MICROSCOPY: spores cyl<strong>in</strong>drical-ellipsoidal, 9-13 × 4-<br />

5.5 µm, with clear apiculture, with partially jo<strong>in</strong>ed warts,<br />

not amyloid, hyal<strong>in</strong>e under microscope; cyl<strong>in</strong>dricalclaviform,<br />

tetrasporic basidia, with basal jo<strong>in</strong>ts at h<strong>in</strong>ges.<br />

Cystidia abs<strong>en</strong>t.<br />

HABITAT: on the ground <strong>in</strong> hardwood or<br />

mixed woods, <strong>in</strong> summer-autumn; occasional.<br />

Ramaria flavesc<strong>en</strong>s (Schaeff.) Peters<strong>en</strong><br />

EDIBILITY: edible<br />

NOTE - There are numerous yellow species <strong>in</strong> the g<strong>en</strong>us<br />

Ramaria; some of these are fairly poisonous; among<br />

which R. formosa typically stands out due to three<br />

colours: white on its trunk, p<strong>in</strong>k on its branches and<br />

yellow at the branch tips. Other species should be eat<strong>en</strong><br />

with caution as they can have a laxative effect. R. flava,<br />

has least developed basal trunk and can also be id<strong>en</strong>tified<br />

by its large spores (10-15 × 4-6 µm) and the unpleasant<br />

odour of its flesh. R. aurea possesses a less-developed<br />

trunk, from which arise several columns, which <strong>in</strong> turn<br />

branch out <strong>in</strong>to fairly-long, gold<strong>en</strong> yellow app<strong>en</strong>dages; it<br />

lives on the ground <strong>in</strong> woods of Fagus and has warty<br />

spores of the same shape, but smaller (9-11 × 3,5-5 µm).<br />

R. larg<strong>en</strong>tii too has several analagous features to R.<br />

flavesc<strong>en</strong>s but is a very vivid yellow-orange colour and<br />

possesses an unpleasant odour, similar to car tyres, and as<br />

such is usually considered <strong>in</strong>edible.<br />

207


BASIDIOCARP coralloid, about 150 mm <strong>in</strong> width and<br />

200 mm <strong>in</strong> height, usually appears robust, very branched,<br />

with wide base, usually wider than it is tall, very dist<strong>in</strong>ct,<br />

white or whitish, from which fairly thick, erect,<br />

cyl<strong>in</strong>drical branches, vivid p<strong>in</strong>k <strong>in</strong> colour wh<strong>en</strong> young,<br />

th<strong>en</strong>, slowly becomes, p<strong>in</strong>k-ochre-ish, salmon, <strong>en</strong>d<strong>in</strong>g<br />

with a lemon yellow po<strong>in</strong>ted tip, f<strong>in</strong>ally concolour with<br />

branches. The bifurcation of the branches (saddles) very<br />

close to the structure of a U.<br />

HYMENOPHORE not dist<strong>in</strong>ct, found on the surface of<br />

the branches.<br />

FLESH fairly thick, white, soft, marbled with humidity,<br />

brittle wh<strong>en</strong> dry, oft<strong>en</strong> a little red-brownish at gill edge<br />

and wh<strong>en</strong> handled; odour is light or <strong>in</strong>significant, slightly<br />

bitter, sour flavour.<br />

MICROSCOPY: spores cyl<strong>in</strong>drical-ellipsoidal, 9.0-13.0 x<br />

5.0-6.0 μm, warty, hyal<strong>in</strong>e under microscope; tightly<br />

clavate, tetrasporic basidia, with jo<strong>in</strong>ts at h<strong>in</strong>ges;<br />

monomorphic structure, made from septate hyphae, with<br />

jo<strong>in</strong>ts at h<strong>in</strong>ges. Spores are yellow.<br />

208<br />

Ramaria formosa (Pers. : Fr.) Quélet<br />

HABITAT: grows on the ground <strong>in</strong> hardwood areas,<br />

especially oak; summer-autumn, fairly common a little<br />

widespread.<br />

EDIBILITY: toxic<br />

NOTE – This is one of the largest Ramaria (carpophores<br />

over 300 mm <strong>in</strong> height have be<strong>en</strong> found!) and can be<br />

easily recognised by its three colours and its parallelshaped<br />

branches. It is toxic and provokes gastro<strong>in</strong>test<strong>in</strong>al<br />

disturbances <strong>in</strong>clud<strong>in</strong>g strong and cont<strong>in</strong>ual diarrhoea. R.<br />

neoformosa has diverg<strong>en</strong>t branches, with preval<strong>en</strong>t<br />

bifurcations similar to Var; R. flavesc<strong>en</strong>s, with which it<br />

oft<strong>en</strong> shares the same habitat. Its colour makes it the<br />

closest species but it has divaricat<strong>in</strong>g, scattered branches,<br />

mixed, U- and V-shaped saddles and its branch tips are a<br />

corn-yellow colour; R. fagetorum has a longer, tighter<br />

base and preval<strong>en</strong>tly V-shaped angles; R. cettoi can be<br />

told apart by the dark reddish colour of its branches and<br />

its sweet, pleasant odour and flavour.


BASIDIOCARP <strong>in</strong>itially subglobular and with<br />

resembl<strong>in</strong>g a cauliflower due to the pres<strong>en</strong>ce of branches,<br />

th<strong>en</strong> coralloid, about 150-180 mm <strong>in</strong> width and <strong>in</strong> height,<br />

made from a solid, but not very developed basal trunk,<br />

white or whitish-yellow <strong>in</strong> colour, from which various<br />

columns grow which are th<strong>en</strong> divided <strong>en</strong>d<strong>in</strong>g with one or<br />

two short po<strong>in</strong>ts, yellow-orange, fire orange, sometimes<br />

scarlet red <strong>in</strong> colour.<br />

HYMENOPHORE not <strong>in</strong>dividualised, found on<br />

the upper half of the branches.<br />

FLESH compact (hav<strong>in</strong>g a monomorphic hyphal<br />

structure), white, with a fairly pronounced odour of tyres<br />

or “d<strong>en</strong>tal surgery” and sweet-sour flavour<br />

MICROSCOPY: spores ellipsoidal or cyl<strong>in</strong>dricalellipsoidal,<br />

12-14.5 × 3.5-5 µm, with clear apiculture,<br />

warty, not amyloid, hyal<strong>in</strong>e-yellow under microscope;<br />

claviform, tetrasporic basidia, with basal jo<strong>in</strong>t on h<strong>in</strong>ges.<br />

Cystidia abs<strong>en</strong>t.<br />

Ramaria larg<strong>en</strong>tii Marr & Stuntz<br />

HABITAT: on the ground <strong>in</strong> conifer woods, <strong>in</strong> summerautumn;<br />

fairly common.<br />

EDIBILITY: not edible<br />

NOTE - Ramaria aurea is similar but forms smaller<br />

carpophores with a gold<strong>en</strong>-yellow colour and has<br />

branches which spread out from a rather undeveloped<br />

base. It fruits on the ground <strong>in</strong> Fagus woods dur<strong>in</strong>g the<br />

summer-autumn period and produces small spores 9-11 ×<br />

3,5-5 µm, which are covered with partially-united warts.<br />

R. flava too has yellowish colouration and has not-very<br />

differ<strong>en</strong>tiated branches which develop from its basal<br />

trunk; it grows <strong>in</strong> conifer woods and has 10-15 × 4-6 µm<br />

spores which are mostly warty. Other species <strong>in</strong> this<br />

g<strong>en</strong>us have similar colours; their morphological<br />

id<strong>en</strong>tification can mostly be based on the colour of their<br />

branches, but to be sure we must recourse to microscopic<br />

analysis, particularly of spore characteristics.<br />

209


BASIDIOCARP <strong>in</strong>itially like a cauliflower, soon<br />

coralloid, up to 200 mm <strong>in</strong> width, height can reach more<br />

than 150 (200) mm, made from a basal trunk which is at<br />

most 40 mm <strong>in</strong> from which various branches grow and<br />

are subdivided aga<strong>in</strong>, <strong>en</strong>d<strong>in</strong>g <strong>in</strong> two short po<strong>in</strong>ts. The<br />

trunk is whitish ivory towards the base, with ochre-ish<br />

shades elsewhere; branches are yellow or weakly<br />

yellowish, sometimes with flesh coloured sta<strong>in</strong>s, darker<br />

due to the maturation of the spores, fairly oft<strong>en</strong> bear<strong>in</strong>g a<br />

s<strong>in</strong>uous pattern.<br />

HYMENOPHORE not dist<strong>in</strong>ct, distributed over the upper<br />

half of the branches.<br />

FLESH compact, th<strong>en</strong> soft (<strong>in</strong> a monomorphic hyphal<br />

structure), white, with weak or <strong>in</strong>significant odour of dry<br />

grass, and no dist<strong>in</strong>ct flavour.<br />

MICROSCOPY: spores irregularly ellipsoidal, sometimes<br />

flatt<strong>en</strong>ed on one side, 9-12 × 4.5-5.5 µm, with partially<br />

jo<strong>in</strong>ed warts, not amyloid, hyal<strong>in</strong>e-yellow under<br />

microscope; claviform, tetrasporic basidia, without basal<br />

jo<strong>in</strong>ts at h<strong>in</strong>ges. Cystidia abs<strong>en</strong>t.<br />

210<br />

Ramaria pallida (Schaeff.) Rick<strong>en</strong><br />

HABITAT: on the ground <strong>in</strong> conifer and mixed woods, <strong>in</strong><br />

summer to autumn; common.<br />

EDIBILITY: toxic<br />

NOTE - The light colour of R. pallida is similar to several<br />

Clavul<strong>in</strong>a, such as C. rugosa, which has far-less<br />

developed carpophores, with no def<strong>in</strong>ed basal trunk and<br />

featur<strong>in</strong>g thick, sometimes rough and flatt<strong>en</strong>ed branches.<br />

Furthermore, it has very diverse globose, round and<br />

smooth spores 9-13.5 × 7.5-10 µm, and typically fruits on<br />

woodland floors. R. gracilis grows <strong>in</strong> conifer woods and<br />

has coralloid, white-ochre carpophores no larger than 60<br />

mm, which have a p<strong>in</strong>kish colour to them. Its spores,<br />

which are ellipsoid and f<strong>in</strong>ely verrucose, are noticeably<br />

smaller and 5-7 × 3-4 µm <strong>in</strong> size. With colours t<strong>en</strong>d<strong>in</strong>g to<br />

grey-violet is R. fumigata, which produces arboresc<strong>en</strong>tcoralloid<br />

carpophores; fruits <strong>in</strong> hardwoods forests <strong>in</strong><br />

summer and autumn and produces 9.5-11.5 × 4-5 µm<br />

spores covered with partially-united warts.


CAP 50-80 (100) mm, hemispheric or truncatedhemispheric,<br />

th<strong>en</strong> convex, f<strong>in</strong>ally flat or flat depressed,<br />

with obtuse marg<strong>in</strong>, slightly grooved <strong>in</strong> old age; <strong>in</strong>itially<br />

of firm, hard, becom<strong>in</strong>g more fragile dur<strong>in</strong>g maturity of<br />

the carpophore. Surface appears greasy-sh<strong>in</strong>y, viscous<br />

with humidity, fairly corrugated, from c<strong>in</strong>nabar red to fire<br />

red, vivid orange, oft<strong>en</strong> with ext<strong>en</strong>ded sulphur yellow<br />

zone, sometimes completely yellow; f<strong>in</strong>e cuticle,<br />

separable for 1/3 of the radius.<br />

GILLS rounded, subfree, fairly wide, very th<strong>in</strong> and<br />

fragile, fairly crowded; whitish, th<strong>en</strong> pale cream flat<br />

appearance, f<strong>in</strong>ally also ext<strong>en</strong>sively yellow, typically with<br />

a yellow surface (these features are rarely evid<strong>en</strong>t and<br />

oft<strong>en</strong> completely abs<strong>en</strong>t).<br />

STIPE 35-80 × 12-25 mm, from cyl<strong>in</strong>drical to<br />

subfusiform dry corrugated-rugulous, white, not<br />

<strong>in</strong>frequ<strong>en</strong>tly evid<strong>en</strong>t and with fairly sulphuric yellow<br />

shades; full, soon becom<strong>in</strong>g filled-medullar.<br />

FLESH fairly hard <strong>in</strong> young specim<strong>en</strong>s, soon becom<strong>in</strong>g<br />

fragile and brittle, almost friable <strong>in</strong> adults; white,<br />

Russula aurea (Persoon)<br />

sometimes yellow for a fairly ext<strong>en</strong>ded subcuticular area,<br />

of flavourful and non dist<strong>in</strong>ctive odour.<br />

CHEMICAL REACTION: Guaiac quickly blue gre<strong>en</strong>ish.<br />

FeSO weak, p<strong>in</strong>k pale ochre-ish.<br />

4<br />

MICROSCOPY: spore from mostly ellipsoidal to ovoid,<br />

7.5-9.0 × 6.2-7.5 µm, warty, partially reticulated. Light<br />

yellow <strong>in</strong> mass.<br />

HABITAT: ubiquitous and mostly widespread; pres<strong>en</strong>t<br />

from summer and fruits until late autumn.<br />

EDIBILITY: edible<br />

NOTE - This species is easy to recognise wh<strong>en</strong> it shows<br />

its typical characteristics; its colour<strong>in</strong>g, with a yellow<br />

surface surround<strong>in</strong>g its gills, and the fragility of adult<br />

specim<strong>en</strong>s’ flesh; however, it should be noted that this is a<br />

very “capricious” species, which sometimes appears<br />

completely yellow, and sometimes does not have the<br />

yellow mark<strong>in</strong>g around the gills. Among edible species it<br />

is, with good reason, considered one of the best,<br />

notwithstand<strong>in</strong>g the frail flesh and gills of adult<br />

specim<strong>en</strong>s.<br />

211


CAP 50-140 mm, fleshy and compact, subglobular with a<br />

fairly po<strong>in</strong>ted, gradually expanded summit, f<strong>in</strong>ally also<br />

depressed, marg<strong>in</strong> is b<strong>en</strong>t at the extremes, subacute;<br />

cuticle separable to half of the radius, lubricated-sh<strong>in</strong>y,<br />

ev<strong>en</strong> greasy <strong>in</strong> humid weather, from violet lilac to violet<br />

blueish, fairly variegated of gre<strong>en</strong>, grey-gre<strong>en</strong>, sometimes<br />

completely cyclam<strong>en</strong> p<strong>in</strong>k (fo. lilacea), completely gre<strong>en</strong><br />

olive or pear gre<strong>en</strong> (fo. peltereaui), ev<strong>en</strong>tually dimpled<br />

towards the edge (fo. cutefracta).<br />

GILLS b<strong>en</strong>t-adnate or a little decurr<strong>en</strong>t, sometimes<br />

biforked at <strong>in</strong>sertion, close, fairly crowded, lardaceous,<br />

whitish, sometimes fairly clear cream, ev<strong>en</strong>tually also<br />

sta<strong>in</strong>ed brown ochre.<br />

STIPE 30-90 × 15-35 mm, cyl<strong>in</strong>drical, rugulous,<br />

completely white or suffused with lilac p<strong>in</strong>k, vaguely<br />

grey<strong>in</strong>g due to imbibition, ev<strong>en</strong>tually a little sta<strong>in</strong>ed of<br />

brown, filled with a compact medulla, th<strong>en</strong> cavernousfilled.<br />

FLESH highly compact, almost hard normally lilac under<br />

the cuticle, white elsewhere; mild flavour, slightly<br />

s<strong>en</strong>sitive odour, <strong>in</strong> mature specim<strong>en</strong>s, after rubb<strong>in</strong>g, it is<br />

212<br />

Russula cyanoxantha (Schaeffer) Fries<br />

possible to experi<strong>en</strong>ce an unpleasant metallic note, like<br />

FeSO .<br />

4<br />

CHEMICAL REACTION: Guaiac strong and rapid.<br />

Anil<strong>in</strong>e late on, orange on the gills. FeSO negative, th<strong>en</strong><br />

4<br />

slowly grey-gre<strong>en</strong>.<br />

MICROSCOPY: spores ellipsoidal-oboval or r<strong>en</strong>iform <strong>in</strong><br />

parts, (6.4) 7.2-9 (9.5) × 5.8-7 µm, warty, hemispheric<br />

0.4-0.5 µm, isolated or grouped <strong>in</strong> part from slightly<br />

amyloid connections. Spores are pure white.<br />

HABITAT: ubiquitous species, common from the start of<br />

the season under hardwood and conifer, from the<br />

mediterranean up to limited tree vegetation.<br />

EDIBILITY: edible<br />

NOTE - Accord<strong>in</strong>g to Bon, the types with cream, elastic<br />

<strong>in</strong>stead of waxy gills, a dark violet cap and stipe usually<br />

featur<strong>in</strong>g a lilac-p<strong>in</strong>k colour<strong>in</strong>g, belong to an <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t<br />

species named R. langei. Specim<strong>en</strong>s with a subuniform<br />

violet-lilac cap (fo. lilacea) can seem similar to R. grisea,<br />

differ<strong>en</strong>tiated only by the cream spores, fragile gills, spicy<br />

taste and red-orange reaction to FeSO 4 .


CAP 60-140 (185) mm, fleshy and firm, hemispheric,<br />

th<strong>en</strong> convex, with obtuse umbilical dimple <strong>in</strong> the<br />

background, slowly expand<strong>in</strong>g, ev<strong>en</strong>tually deeply<br />

<strong>in</strong>fundibulform; marg<strong>in</strong> b<strong>en</strong>t at the extremes, th<strong>in</strong>ned;<br />

semiadnate dry and matt cuticle, thorny or a little felted,<br />

covered with residues of soil and leaves difficult to<br />

separate, whitish at first, soon becom<strong>in</strong>g sta<strong>in</strong>ed ochre<br />

brown, th<strong>en</strong> of rusty brown, start<strong>in</strong>g with the most<br />

exposed parts.<br />

GILLS a little decurr<strong>en</strong>t on stipe, falciform-arcuate,<br />

subacute at the front, forked <strong>in</strong> parts, width of 6-9 mm,<br />

<strong>in</strong>tercalated from lamellule of diverse l<strong>en</strong>gths, fairly<br />

spaced, fragile although rigid, cream, with the whole<br />

surface coloured, soon becom<strong>in</strong>g sta<strong>in</strong>ed rusty brown on<br />

the most exposed parts.<br />

STIPE 25-48 × 15-35 mm, hard, highly stocky and robust,<br />

flared at the top, or cyl<strong>in</strong>drical subequal, subsmooth or<br />

f<strong>in</strong>ely corrugated surface, pru<strong>in</strong>ose, white, th<strong>en</strong> sta<strong>in</strong>ed<br />

rusty brown, rarely with glucose belts under the gills, the<br />

medulla is compact, only ev<strong>en</strong>tually a little spr<strong>in</strong>gy and<br />

wormy.<br />

Russula delica Fries<br />

FLESH very thick, firm and fragile, white, clearly<br />

brown<strong>in</strong>g on the surface and washed with ochre tones to<br />

air after the gill edge; strong and unpleasant odour, like<br />

fish or salty, with fruity h<strong>in</strong>ts wh<strong>en</strong> young, peppery<br />

flavour, less on the gills.<br />

CHEMICAL REACTION: Guaiac strong and rapid.<br />

FeSO pale p<strong>in</strong>k.<br />

4<br />

MICROSCOPY: spores from obvoid to subglobose, 8.5-<br />

11.2 × 7-9 µm, ech<strong>in</strong>ulate, crested-cat<strong>en</strong>ulate, partly<br />

connected, subreticulate, with obtuse sp<strong>in</strong>es; creamwhitish<br />

<strong>in</strong> mass.<br />

HABITAT: very common species under hardwood and<br />

conifer, with prefer<strong>en</strong>ce to dry, calcerous ground.<br />

EDIBILITY: of no value<br />

NOTE - R. chloroides can be dist<strong>in</strong>guished by its funnelshaped,<br />

fairly regular cap and its very close and crowded<br />

gills. R. palespora is a highly characteristic species for its<br />

refresh<strong>in</strong>g, amaresc<strong>en</strong>t flavour which is never harsh. Its<br />

gills are ochre with an orange lustre at maturity, with full,<br />

cream spores.<br />

213


CAP 50-100 (120) mm, fleshy, <strong>in</strong>itially firm <strong>in</strong> the shape<br />

of a helmet, th<strong>en</strong> convex, becom<strong>in</strong>g flat, f<strong>in</strong>ally also<br />

lightly depressed; with obtuse and jo<strong>in</strong>t marg<strong>in</strong>; cuticle is<br />

separable up to half of the radius, lubricated and sh<strong>in</strong>y,<br />

full vivid red, apple red, arterial blood red, sometimes<br />

with blackish shades <strong>in</strong> the c<strong>en</strong>tre or with a sharply<br />

demarcated ivory-cream zone.<br />

GILLS rounded or almost free at <strong>in</strong>sertion, from lightly<br />

convex to straight, width of 6-9 mm, th<strong>in</strong> and fragile,<br />

f<strong>in</strong>ally spaced, sparsely forked, <strong>in</strong>terve<strong>in</strong>ed, sometimes<br />

whitish, with cream straw t<strong>in</strong>ges very clear view of gill<br />

edge; <strong>in</strong>tercalated by sporadic lamellule.<br />

STIPE 50-80 (100) × 10-20 mm, slim, slightly claviform<br />

wh<strong>en</strong> young, th<strong>en</strong> fairly cyl<strong>in</strong>drical, oft<strong>en</strong> lightly th<strong>in</strong>ned<br />

at tip, visibly corrugated, white, slightly sta<strong>in</strong>ed yellowbrown<br />

<strong>in</strong> certa<strong>in</strong> conditions, f<strong>in</strong>ely striated and a little<br />

sat<strong>in</strong> for the rest; medullar, soon becom<strong>in</strong>g <strong>in</strong>complete.<br />

FLESH fragile, a little watery, white, slightly yellow<strong>in</strong>g<br />

wh<strong>en</strong> handled; peppery flavour <strong>in</strong> every part,<br />

imperceptible or lightly fruity odour at gill edge.<br />

214<br />

Russula emetica (Schaeff. : Fr.) Persoon<br />

CHEMICAL REACTION: Guaiac, subnul.<br />

MICROSCOPY: spores mostly oboval 8.8-10.5 × 7.4-8.8<br />

µm, ech<strong>in</strong>ulate, with large conical-obtuse warts,<br />

sometimes briefly crested, reticulated-connected. Spores<br />

are whitish.<br />

HABITAT: under conifers <strong>in</strong> mounta<strong>in</strong>s, mostly Picea,<br />

but also under birch; with prefer<strong>en</strong>ce to sphagnum or<br />

other types of moss.<br />

EDIBILITY: toxic<br />

NOTE - Among similar species, we can dist<strong>in</strong>guish: R.<br />

grisesc<strong>en</strong>s Sphagnicolous, around half the size of R.<br />

emetica, flesh grey<strong>in</strong>g with humidity, positive reaction to<br />

Guaiac, spores very much smaller and f<strong>in</strong>ely ornate; R.<br />

nanatypical of Alp<strong>in</strong>e microsilva. R. mairei found <strong>in</strong> fresh<br />

hardwood forests, with a predilection for the Beech has<br />

flesh that turns blue on treatm<strong>en</strong>t with Guaiac and gills<br />

that reveal a glaucous t<strong>in</strong>ge which is <strong>in</strong>consist<strong>en</strong>t but<br />

characteristic. R. silvestris grows <strong>in</strong> dryer ground on<br />

mossy carpets at the bottom of oak, chestnut or p<strong>in</strong>e trees.


CAP 55-140 (200) mm, fleshy and rigid subglobular,<br />

progressively expansive, th<strong>en</strong> flat, grooved-tubercolate<br />

marg<strong>in</strong> for 20-30 mm, acute; thorny surface, cuticle is<br />

separable for a third of the radius, viscous, persist<strong>en</strong>tly<br />

sh<strong>in</strong>y wh<strong>en</strong> dry, yellow-brown colour, honey like, paler <strong>in</strong><br />

peripheral area, th<strong>en</strong> bear<strong>in</strong>g brown tawny spots, also<br />

tawny blackish <strong>in</strong> the contused parts.<br />

GILLS rounded-free, partly connate at <strong>in</strong>sertion, width of<br />

8-16 mm, unequal, fairly thick, sparsely forked, not very<br />

crowded, <strong>in</strong>terve<strong>in</strong>ed, fragile, ivory cream, bear<strong>in</strong>g watery<br />

drops <strong>in</strong> humid weather, with residual rusty sta<strong>in</strong>s on gill<br />

edge, brown<strong>in</strong>g with age.<br />

STIPE 60-120 × 20-40 mm, cyl<strong>in</strong>drical, fairly flared at<br />

tip, corrugated, rusty at tip, sta<strong>in</strong>ed brown grey<strong>in</strong>g<br />

elsewhere, medullar-<strong>in</strong>complete for three or four cells<br />

soon becom<strong>in</strong>g conflu<strong>en</strong>t with wide caverns, the sk<strong>in</strong> is<br />

fragile and thick, papered with brownish lumps and soft<br />

<strong>in</strong>ternally.<br />

FLESH rigid and fragile, whitish on gill edge, not<br />

yellow<strong>in</strong>g, very sta<strong>in</strong>ed soon becom<strong>in</strong>g rusty brown; very<br />

clear peppery flavour, unpleasant odour, complex and<br />

Russula foet<strong>en</strong>s Pers. : Fr.<br />

difficult to def<strong>in</strong>e, with fruity h<strong>in</strong>ts <strong>in</strong> the second level and<br />

only to perceptible traits.<br />

CHEMICAL REACTION: Guaiac positive. KOH<br />

negative.<br />

MICROSCOPY: spore subglobose, 8-9.8 × 7-8.2 µm,<br />

with flat sp<strong>in</strong>es and apex, <strong>in</strong>completely amyloid.<br />

HABITAT: gregarious, widespread and abundant, under<br />

hardwood and conifers.<br />

EDIBILITY: not edible<br />

NOTE - R. laurocerasi can be id<strong>en</strong>tified by its average or<br />

small stature, the abs<strong>en</strong>ce of glut<strong>en</strong>, a strong smell of<br />

bitter almonds; its rounded spores, embellished with<br />

spectacular w<strong>in</strong>ged crests. Also R. illota gives off<br />

efflu<strong>en</strong>ce of bitter almonds, though to a lesser degree and<br />

mixed with rather less pleasant h<strong>in</strong>ts than R. foet<strong>en</strong>s. The<br />

stipe and the gill edge of its gills display a characteristic<br />

blackish-brown series of mark<strong>in</strong>gs. Its most similar<br />

lookalike, however is, R. subfoet<strong>en</strong>s, recognizable by its<br />

slightly smaller stature, the surface of its cap which is<br />

usually without glut<strong>en</strong>, its yellow<strong>in</strong>g flesh and its positive<br />

reaction to KOH.<br />

215


CAP 60-100 (130) mm, very fleshy and hard, globular or<br />

with lightly po<strong>in</strong>ted summit, pulv<strong>in</strong>ate, f<strong>in</strong>ally dist<strong>en</strong>ded<br />

and a little depressed, with fleshy and obtuse rigid<br />

marg<strong>in</strong>, curv<strong>in</strong>g at the extremes; cuticle is separable for a<br />

third of the radius, thick, t<strong>en</strong>acious-elastic, appears<br />

greasy, sh<strong>in</strong>y, rarely matt or ev<strong>en</strong> pru<strong>in</strong>ose, brown, brown<br />

honey or chestnut.<br />

GILLS att<strong>en</strong>uated, th<strong>en</strong> rounded, fairly crowded, with<br />

some fork<strong>in</strong>g, subacute at the front, nearly straight, width<br />

of 5-8 mm, <strong>in</strong>terve<strong>in</strong>ed, sublardaceous, straw cream, th<strong>en</strong><br />

sta<strong>in</strong>ed brown on the surface; some lamellule are pres<strong>en</strong>t.<br />

STIPE 40-100 × 15-35 mm, bulky, from cyl<strong>in</strong>drical to<br />

subclavate, clearly corrugated, sta<strong>in</strong>ed brown and oft<strong>en</strong><br />

plicate at base, ivory-cream, th<strong>en</strong> with fairly ext<strong>en</strong>sive<br />

rusty sta<strong>in</strong>s; full, compact medulla, f<strong>in</strong>ally cavernous.<br />

FLESH of notable thickness and hardness, firm, white,<br />

shades of yellow under the cuticle, clearly washed with<br />

ochre brown wh<strong>en</strong> exposed to air and with age; sweet<br />

flavour and no dist<strong>in</strong>ctive odour.<br />

CHEMICAL REACTION: FeSO vivid orange. anil<strong>in</strong>e<br />

4<br />

on the gills, slowly yellow. Guaiac fairly rapid and<br />

<strong>in</strong>t<strong>en</strong>se.<br />

216<br />

Russula mustel<strong>in</strong>a Fries<br />

MICROSCOPY: spores oboval 7-9.7 × 5.8-7.8 µm,<br />

warty, crispate, weakly connected, subreticular. Pale<br />

cream ochre-ish <strong>in</strong> mass.<br />

HABITAT: highly common alp<strong>in</strong>e forests where it grows<br />

<strong>in</strong> abundance and fairly underground; <strong>en</strong>d of summerautumn.<br />

EDIBILITY: edible<br />

NOTE - An edible mushroom which is widely<br />

commercialised thanks to its firm flesh and pleasant<br />

flavour. It can be id<strong>en</strong>tified by its tawny-brown to honeybrown<br />

colouration, evocative of R. foet<strong>en</strong>s or Boletus<br />

edulis, its pale cream spores, and a vivid orange reaction<br />

to FeSO 4. It loves to grow fairly buried <strong>in</strong> temperate<br />

periods, from the <strong>en</strong>d of summer to autumn, until the first<br />

signs of w<strong>in</strong>ter. In some years it can be found abundantly<br />

while <strong>in</strong> others it can still be found, yet far less<br />

numerously.


CAP 40-70 (100) mm fleshy and firm th<strong>en</strong> more fragile,<br />

at first convex-subhemispheric, progressively flat, f<strong>in</strong>ally<br />

mostly depressed, with th<strong>in</strong>ned but obtuse marg<strong>in</strong>, briefly<br />

grooved <strong>in</strong> maturity; cuticle separable to almost half of<br />

the radius, wet and sh<strong>in</strong>y collectively, red purple, violet<br />

v<strong>in</strong>ous, dark violet, oft<strong>en</strong> blackish towards the disc, other<br />

times brown violet, partly brownish, streaks of gre<strong>en</strong>grey.<br />

GILLS att<strong>en</strong>uated or lightly rounded, obtuse at the front,<br />

<strong>in</strong>terve<strong>in</strong>ed, sparsely forked, fairly crowded, width of 4-8<br />

mm, fragile, whitish, th<strong>en</strong> dirty cream, <strong>in</strong>terspersed with<br />

<strong>in</strong>frequ<strong>en</strong>t lamellule.<br />

STIPE 30-90 × 10-20 mm, cyl<strong>in</strong>drical, sometimes a little<br />

fusiform, rugulous, white at base, with red shades<br />

elsewhere, carm<strong>in</strong>e under a whitish bloom thick<strong>en</strong>ed and<br />

fugacious to the touch, oft<strong>en</strong> completely white, a little<br />

grey<strong>in</strong>g due to imbibition, the medulla is compact, th<strong>en</strong><br />

soft<strong>en</strong>ed and partly <strong>in</strong>complete.<br />

FLESH violet under the cuticle, a little grey<strong>in</strong>g due to<br />

imbibition; <strong>in</strong>t<strong>en</strong>se fruity odour, like mature pears, clearly<br />

peppery flavour.<br />

Russula queletii Fries<br />

CHEMICAL REACTION: Guaiac positive, slow. FeSO 4<br />

pale p<strong>in</strong>k-orange.<br />

MICROSCOPY: spores ellipsoidal-oboval 7.3-9 (9.8) ×<br />

6-7.3 (8.2) µm, from ech<strong>in</strong>ulate to sp<strong>in</strong>ulose, to warty<br />

conical-obtuse. Light cream <strong>in</strong> mass.<br />

HABITAT: highly common <strong>in</strong> the subalp<strong>in</strong>e area under<br />

Picea <strong>in</strong> calcerous non-humid ground, sometimes also<br />

under white fir and P<strong>in</strong>us.<br />

EDIBILITY: toxic<br />

NOTE - R. cavipes is smaller and grows under Abies alba,<br />

and more rarely under Picea, it has a humid and bright<br />

cuticle, more widely-spaced gills which are whitish wh<strong>en</strong><br />

young, its stipe is never red-violet and its spores are pale<br />

cream; Furthermore, it has a subnul reaction to Guaiac<br />

test<strong>in</strong>g and a positive, redd<strong>en</strong><strong>in</strong>g, reaction to ammonia. It<br />

has a peppery flavour and an <strong>in</strong>t<strong>en</strong>se, pleasant odour of<br />

geraniums. R. sardonia, can be id<strong>en</strong>tified by its pale,<br />

sulphuric gills, <strong>in</strong>significant odour and its ar<strong>en</strong>aceous p<strong>in</strong>e<br />

habitat.<br />

217


CAP 30-100 (120) mm, from convex to flat, f<strong>in</strong>ally<br />

depressed, f<strong>in</strong>e firm marg<strong>in</strong>, curv<strong>in</strong>g, regular, smooth, yet<br />

slightly striated, briefly, <strong>in</strong> adult specim<strong>en</strong>s; vivid red,<br />

cherry red, carm<strong>in</strong>e red, without violet tones, paler at<br />

marg<strong>in</strong>, fad<strong>in</strong>g to pale p<strong>in</strong>k, sometimes with white ivory<br />

patches; surface rough due to f<strong>in</strong>e granules, dry and matt,<br />

lightly viscous and sh<strong>in</strong>y with humidity.<br />

GILLS adnate and fairly decurr<strong>en</strong>t, <strong>in</strong>itially b<strong>en</strong>t, th<strong>en</strong><br />

horizontal or a little v<strong>en</strong>tricular, width of 3 to 10 mm,<br />

thick, fairly crowded, sometimes biforked, jo<strong>in</strong>ed on the<br />

background by f<strong>in</strong>e ve<strong>in</strong>s, irregularly <strong>in</strong>tercalated from<br />

some lamellule; whitish th<strong>en</strong> cream-ochre-ish, f<strong>in</strong>e edge,<br />

sometimes coloured red.<br />

STIPE 30-80 × 10-30 mm, fairly stocky, cyl<strong>in</strong>drical or<br />

att<strong>en</strong>uated at base, rigid, full, ev<strong>en</strong>tually filled-cavernous;<br />

normally completely suffused with red or red-p<strong>in</strong>kish, up<br />

to almost concolour with cap, on white-ochre-ish<br />

background, fairly yellow<strong>in</strong>g start<strong>in</strong>g from the base;<br />

surface is f<strong>in</strong>ely rugulous-reticulated.<br />

218<br />

Russula sangu<strong>in</strong>ea (Bulliard) Fries<br />

FLESH firm compact, firm, whitish, carm<strong>in</strong>e red under<br />

the cuticle, yellow<strong>in</strong>g fairly slowly; weak fruity odour;<br />

acrid, hot and also bitter flavour. Slow but positive<br />

reaction to Guaiac.<br />

MICROSCOPY: spores pale ochre <strong>in</strong> mass, oboval with<br />

conical-obtuse warts about 1 µm high, jo<strong>in</strong>ed <strong>in</strong> parts with<br />

<strong>in</strong>frequ<strong>en</strong>t ridges, 7.8-9.4 × 6.5-8.2 µm.<br />

HABITAT: <strong>in</strong> conifer woods, pr<strong>in</strong>cipally under p<strong>in</strong>e,<br />

fairly common, <strong>in</strong> summer-autumn.<br />

EDIBILITY: toxic<br />

NOTE - Russula sangu<strong>in</strong>ea, due to its morphochromatic<br />

features, is similar to: R. persic<strong>in</strong>a which, however,<br />

favours hardwood forests; R. helodes, typical of high<br />

mounta<strong>in</strong> bogs and is l<strong>in</strong>ked to conifers; R. rhodopus,<br />

with its lacquered red cap, and habitat of acidic grounds<br />

<strong>in</strong> red fir forests. In the wild one also comes across some<br />

chromatic variants, g<strong>en</strong>erally ranked by shape or variety.


CAP 45-100 (140) mm, fleshy and firm, subglobular, th<strong>en</strong><br />

irregularly flat, ev<strong>en</strong>tually depressed, with th<strong>in</strong>ned yet<br />

obtuse marg<strong>in</strong>; cuticle is separable for two fifths of the<br />

radius, oft<strong>en</strong> a little retracted towards the marg<strong>in</strong>, soon<br />

becom<strong>in</strong>g dry and matt, p<strong>in</strong>k lilac, brown v<strong>in</strong>ous,<br />

sometimes with undef<strong>in</strong>ed pale areas, cream flesh colour,<br />

occasionally sta<strong>in</strong>ed gre<strong>en</strong>-grey, with streaks darker than<br />

the background.<br />

GILLS vaguely decurr<strong>en</strong>t and biforked mostly at the<br />

<strong>in</strong>sertion, subacute at the front, crowded and relatively<br />

close, delicately <strong>in</strong>terve<strong>in</strong>ed, sublardaceous wh<strong>en</strong> young,<br />

whitish, with rusty sta<strong>in</strong>s and f<strong>in</strong>ally yellow wh<strong>en</strong><br />

handled.<br />

STIPE from subcyl<strong>in</strong>drical to fairly progressively<br />

att<strong>en</strong>uated towards the base, corrugated, rare h<strong>in</strong>ts of p<strong>in</strong>k<br />

on the side, rusty low down, with some yellow-brown<br />

sta<strong>in</strong>s, full, th<strong>en</strong> a little filled with age.<br />

FLESH compact, white, clearly yellow<strong>in</strong>g wh<strong>en</strong> touched<br />

and partly sta<strong>in</strong>ed brown; completely sweet flavour and<br />

<strong>in</strong>dist<strong>in</strong>ctive odour.<br />

CHEMICAL REACTION: FeSO red-orange. Guaiac<br />

4<br />

positive. anil<strong>in</strong>e, yellow.<br />

Russula vesca Fries<br />

MICROSCOPY: spores oboval or a little elongated, 6.4-8<br />

× 5.3-5.8 µm, with isolated warts; any l<strong>in</strong>ks betwe<strong>en</strong> them<br />

are very th<strong>in</strong> and sporadic. characteristic needle-like<br />

forms protrude from rigid and thick cell walls.<br />

HABITAT: highly common <strong>in</strong> mildly acidic or neutral<br />

ground under various types of hardwood and under<br />

conifers <strong>in</strong> mounta<strong>in</strong>s; from the late spr<strong>in</strong>g.<br />

EDIBILITY: edible<br />

NOTE - R. vesca can be recognised by its slightly lilac or<br />

w<strong>in</strong>ey-brown flesh, the t<strong>en</strong>d<strong>en</strong>cy to turn yellow-brown on<br />

its deteriorat<strong>in</strong>g parts, its sweet flavour, white spores and<br />

a red-orange reaction to FeSO 4 . One should guard aga<strong>in</strong>st<br />

giv<strong>in</strong>g excessive importance to characteristics which are<br />

<strong>in</strong>consist<strong>en</strong>t and none too specific: the t<strong>en</strong>d<strong>en</strong>cy of the<br />

cuticle to retract towards the marg<strong>in</strong> (“habillé trop court”<br />

accord<strong>in</strong>g to a metaphor giv<strong>en</strong> by Fr<strong>en</strong>ch authors) for<br />

example. In the case of gre<strong>en</strong><strong>in</strong>g or partially discoloured<br />

samples, the completely sweet flavour, white spores and<br />

an <strong>en</strong>ergetic reaction to FeSO 4 should help to dist<strong>in</strong>guish<br />

this aga<strong>in</strong>st other, macroscopically similar species of<br />

Grise<strong>in</strong>ae.<br />

219


220<br />

Sarcosphaera crassa (Santi ex Steudel) Pouzar<br />

[= S. eximia Durieu & Léveillé; S. coronaria (Jacqu<strong>in</strong>) Schroeter]<br />

ASCOCARP made from a subspheric, sessile apothecium.<br />

APOTHECIUM <strong>in</strong>itially semi-underground, globular, up<br />

to 160 mm <strong>in</strong> diameter, top is op<strong>en</strong> only for a fairly small<br />

operculum (sometimes <strong>in</strong> a non apical position), th<strong>en</strong><br />

more and more op<strong>en</strong> and protrud<strong>in</strong>g from the ground up<br />

to appear domed and epigean. Hym<strong>en</strong>ophore is smooth,<br />

lightly undulated, <strong>in</strong>itially violet, th<strong>en</strong> darker, t<strong>en</strong>d<strong>in</strong>g to<br />

turn brown violet. Smooth external surface, white greyish.<br />

edge soon becom<strong>in</strong>g cracked, lacianated, with erratic<br />

po<strong>in</strong>ts due to the lacerations on the carpophore dur<strong>in</strong>g<br />

growth.<br />

FLESH fragile, leathery, whitish, thick.<br />

MICROSCOPY: regular ellipsoidal spores, with well<br />

rounded extremes, smooth,18-20 × 7-8 µm, hyal<strong>in</strong>e under<br />

microscope, biguttulate, uniseriat <strong>in</strong> asco; asci are<br />

cyl<strong>in</strong>drical, amyloid, octosporic; cyl<strong>in</strong>drical paraphyses<br />

with slightly wid<strong>en</strong>ed tip, septate and forked.<br />

HABITAT: ubiquitous, on the ground among needles,<br />

leaves, grass or moss, <strong>in</strong> humid places; rarely isolated,<br />

more oft<strong>en</strong> found <strong>in</strong> large groups, from the spr<strong>in</strong>g to<br />

summer, rarely <strong>in</strong> autumn. Quite common.<br />

EDIBILITY: of no value<br />

NOTE - S. crassa has amyloid asci such as the species <strong>in</strong><br />

the g<strong>en</strong>us Peziza; the g<strong>en</strong>us Sarcosphaera is, however,<br />

dist<strong>in</strong>guished from the g<strong>en</strong>us Peziza by its semi-buried<br />

grow<strong>in</strong>g habits. This prerogative does not really seem a<br />

conv<strong>in</strong>c<strong>in</strong>g justification for the creation and ma<strong>in</strong>t<strong>en</strong>ance<br />

of this separation, not least of all because several “true”<br />

Peziza species, such as P. ammophila and P.<br />

pseudoammophila, fruit almost completely underground<br />

<strong>in</strong> the sand of coastal dunes <strong>in</strong> autumn.


CAP 40-120 mm, from hemispheric to convex, th<strong>en</strong> flat;<br />

marg<strong>in</strong> from convoluted to curv<strong>in</strong>g towards the base, th<strong>en</strong><br />

dist<strong>en</strong>ded cuticle overflow<strong>in</strong>g on the hym<strong>en</strong>ophore;<br />

surface is viscous <strong>in</strong> humid weather, otherwise slimy,<br />

totally separable, smooth and sh<strong>in</strong>y <strong>in</strong> dry weather; from<br />

brown reddish, to tawny, to brown yellowish.<br />

TUBES up to 10 mm, from adnate to weakly decurr<strong>en</strong>t;<br />

yellow, th<strong>en</strong> gold<strong>en</strong> yellow and f<strong>in</strong>ally yellow-olive at<br />

complete sporal maturation; pores are <strong>in</strong>itially small and<br />

round, secretes opalesc<strong>en</strong>t yellow drops, a little angular <strong>in</strong><br />

maturation, concolour with tubes, sometimes brown<strong>in</strong>g <strong>in</strong><br />

patches.<br />

STIPE 40-90 × 10-25 mm, cyl<strong>in</strong>drical, a little wid<strong>en</strong>ed at<br />

base, sometimes supple or curv<strong>in</strong>g; covered with a very<br />

m<strong>in</strong>ute, pale yellow granulation, sometimes milky,<br />

coloured on background and only brown<strong>in</strong>g later on; sk<strong>in</strong><br />

is chrome yellow, pale lemon yellow <strong>in</strong> colour, oft<strong>en</strong><br />

brownish patches at base.<br />

FLESH firm wh<strong>en</strong> young, th<strong>en</strong> softer; whitish, yellow<br />

pale near the tubes and under the sk<strong>in</strong> of the stipe;<br />

uniform to the area; weakly f<strong>en</strong>olic odour, sweetish<br />

flavour.<br />

Suillus granulatus (L. : Fr.) Roussel<br />

MICROSCOPY: ellipsoidal spores, 7.8-9.1 × 2.8-3.5 µm,<br />

pale yellow under microscope; cuticle of the cap is<br />

formed from un gelat<strong>in</strong>ised trichoderma, made from<br />

cyl<strong>in</strong>drical hyphae which soon transform becom<strong>in</strong>g cutis.<br />

Spores are brown-ochre.<br />

HABITAT: largely widespread species, considered to be<br />

highly associated with P<strong>in</strong>us and to two needles. Fruits<br />

ma<strong>in</strong>ly <strong>in</strong> hills and mounta<strong>in</strong>s, from summer to late<br />

autumn; common.<br />

EDIBILITY: edible<br />

NOTE - This is perhaps the most well-known Suillus,<br />

very common, and grouped together with similar species<br />

by the common name of “p<strong>in</strong>arolo” <strong>in</strong> Italy. It might be<br />

confused with S. coll<strong>in</strong>itus, due to its id<strong>en</strong>tical edible<br />

properties, but it can be told a part by its colour, which is<br />

normally more brown-red, the abs<strong>en</strong>ce of radial fibrils on<br />

its cap cuticle and its more-m<strong>in</strong>ute stipe decorations. The<br />

spores of S. granulatus are also a fair degree smaller as<br />

well.<br />

221


CAP up until 120 (150) mm, <strong>in</strong>itially hemispheric th<strong>en</strong><br />

convex, pulv<strong>in</strong>ate, rarely; marg<strong>in</strong> curv<strong>in</strong>g at the extremes<br />

towards the base, regular, acute, a little excessive, oft<strong>en</strong><br />

decorated with whitish remnants of the partial veil;<br />

smooth cuticle, very viscous, separable, brown, yellow<br />

brown, brown violet, chocolate brown, oft<strong>en</strong> with darker<br />

radial fibrils wh<strong>en</strong> dry.<br />

TUBES up to 12 mm, adnate or decurr<strong>en</strong>t, `yellow, th<strong>en</strong><br />

chrome yellow, f<strong>in</strong>ally yellow brownish; small, round<br />

pores, only angled <strong>in</strong> advanced maturation, concolour<br />

with tubes, uniform wh<strong>en</strong> pressed.<br />

STIPE 40-70 × 12-30 mm, longer than the diameter of the<br />

cap wh<strong>en</strong> young, th<strong>en</strong> the same l<strong>en</strong>gth as the diameter of<br />

the cap or shorter, cyl<strong>in</strong>drical, oft<strong>en</strong> a little wid<strong>en</strong>ed<br />

towards base, full; with a broad membranous annulus,<br />

whitish <strong>in</strong> colour, th<strong>en</strong> violet brown, it is possible to f<strong>in</strong>d<br />

adher<strong>en</strong>t volviform residues at the base, from whitish to<br />

white-grey-violet. A f<strong>in</strong>e yellow lattice can be found<br />

above the annulus, below the annulus there are yellow<br />

po<strong>in</strong>ts which th<strong>en</strong> become concolour with cap.<br />

222<br />

Suillus luteus (L. : Fr.) Roussel<br />

FLESH <strong>in</strong>itially firm soon becom<strong>in</strong>g soft and watery <strong>in</strong><br />

cap, more fibrous <strong>in</strong> stipe; white, th<strong>en</strong> yellow<strong>in</strong>g; uniform<br />

to gill edge. Pleasant, fruity odour, sweet flavour.<br />

MICROSCOPY: ellipsoidal spores, 7.0-9.2 × 3.0-4.0 µm,<br />

pale yellow under microscope. Spores brown olive rusty<br />

<strong>in</strong> colour.<br />

HABITAT: only <strong>in</strong> groups <strong>in</strong> P<strong>in</strong>us woods, recurr<strong>en</strong>t<br />

from late summer to late autumn.<br />

EDIBILITY: edible<br />

NOTE - This is a very common Suillus, the only one<br />

which has an annulus adorn<strong>in</strong>g its stipe and which grows<br />

with two-fascicle (P. nigra, P. sylvestris, more rarely<br />

anche P. p<strong>in</strong>aster) and three-fascicle (P. radiata) P<strong>in</strong>us<br />

trees. Grows t<strong>en</strong>d<strong>en</strong>tially <strong>in</strong> hills and mounta<strong>in</strong>s and is not<br />

usually found under coastal p<strong>in</strong>es. As it matures and ages,<br />

the cuticle has a t<strong>en</strong>d<strong>en</strong>cy to become dehydrated and at<br />

that stage it oft<strong>en</strong> assumes an appearance very similar to<br />

that of S. coll<strong>in</strong>itus. Several forms and varieties have be<strong>en</strong><br />

described: fo. albus, completely white, and fo. volvaceus,<br />

with a short stipe whose annulus has the appearance of a<br />

volva.


CAP 30-60 mm, a little fleshy, convex campanulate, soon<br />

becom<strong>in</strong>g flat, with an obtuse umbo, lightly convoluted,<br />

th<strong>en</strong> dist<strong>en</strong>ded and th<strong>in</strong>ned marg<strong>in</strong> , sometimes cracked.<br />

Cuticle is dry, separable, without remnants of veil at the<br />

edge, decorated with f<strong>in</strong>e radial fibrils which take the<br />

appearance of small scales, grey-whitish wh<strong>en</strong> young,<br />

th<strong>en</strong> grey.<br />

GILLS non-marg<strong>in</strong>ated and decurr<strong>en</strong>t with teeth, fairly<br />

crowded, th<strong>in</strong> and fragile, with numerous lamellule, white<br />

with greyish h<strong>in</strong>ts, not yellow<strong>in</strong>g with age or wh<strong>en</strong><br />

handled, the surface is undulated-cr<strong>en</strong>ulated, oft<strong>en</strong> a little<br />

serrated.<br />

STIPE 35-70 × 5-20 mm cyl<strong>in</strong>drical, slightly curv<strong>in</strong>g,<br />

lightly wid<strong>en</strong>ed at base, white, silky, oft<strong>en</strong> with remnants<br />

of veil, more visible <strong>in</strong> the apical part of young examples.<br />

FLESH compact th<strong>en</strong> soft <strong>in</strong> cap, firm <strong>in</strong> stipe th<strong>en</strong><br />

fibrous, white not yellow<strong>in</strong>g visibly after collection, with<br />

strong odour and flavour of fresh flour.<br />

Tricholoma argyraceum (Bull. : Fr.) Gillet<br />

MICROSCOPY: spores 5-6 × 2.5-3.5 µm, ellipsoidal,<br />

guttulate. clavate, tetrasporic basidia. Epicyte made from<br />

parallel, collated hyphae, fairly erect.<br />

HABITAT: rare and late species, grows <strong>in</strong> small numbers,<br />

on brok<strong>en</strong> ground normally near hardwood (hornbeam<br />

and hazel).<br />

EDIBILITY: edible<br />

NOTE - This is a species belong<strong>in</strong>g to the Section<br />

Scalpturatum, and is characterized by its odour and<br />

flavour, which recall fresh flour, and by the remnants of<br />

veil on its stipe. It differs from T. scalpturatum (Fr.) Quél.<br />

<strong>in</strong> its grey-silver cap and its non-yellow<strong>in</strong>g flesh, and can<br />

be dist<strong>in</strong>guished from the Terreum <strong>mushrooms</strong>, <strong>in</strong> that<br />

these do not have either a flavour or odour of flour.<br />

223


CAP 50-100 mm, convex or campanulate, th<strong>en</strong> flat and<br />

with a large umbo, the cuticle is dry, lightly viscous and<br />

sh<strong>in</strong>y with humidity, almost smooth or velvety on<br />

circumfer<strong>en</strong>ce <strong>in</strong> dry conditions, decorated with<br />

conc<strong>en</strong>tric brass brown scales or oft<strong>en</strong> with brown reddish<br />

fibrils darker <strong>in</strong> the c<strong>en</strong>tre, the marg<strong>in</strong> is convoluted<br />

l<strong>en</strong>gthwise, th<strong>en</strong> dist<strong>en</strong>ded, lobed and irregular, gold<strong>en</strong><br />

yellow with age.<br />

GILLS non-marg<strong>in</strong>ated or subfree, fairly crowded, <strong>in</strong>t<strong>en</strong>se<br />

yellow or citr<strong>in</strong>a yellow, t<strong>en</strong>d<strong>en</strong>cy to dark<strong>en</strong> with age, the<br />

whole surface is lightly undulated.<br />

STIPE 60-90 × 8-15 mm, subcyl<strong>in</strong>drical or with lightly<br />

clavate base, sometimes short and bulg<strong>in</strong>g, stocky, b<strong>en</strong>t,<br />

concolour with cap, with some sparse brown light reddish<br />

floccules towards base.<br />

FLESH ochre-ish-yellowish or brass colour under the<br />

cuticle of the cap or <strong>in</strong> stipe, with a pleasant, lightly<br />

floury or a little aromatic odour and sweet floury flavour,<br />

bitter if chewed.<br />

MICROSCOPY: spores mostly ellipsoidal or<br />

amygdalform, hyal<strong>in</strong>e, 6.0-7.5 × 3.5-4.5 µm. clavate,<br />

224<br />

Tricholoma equestre (L. : Fr.) Kummer<br />

tetrasporic basidia. Epicyte made from fairly erect,<br />

parallel <strong>in</strong>terwov<strong>en</strong> hyphae,<br />

HABITAT: <strong>in</strong> conifer and hardwood areas where it seems<br />

to prefer poplars.<br />

EDIBILITY: suspect<br />

NOTE – This species is fairly variable <strong>in</strong> its colour. Dry<br />

and completely yellow examples are confusable, at first<br />

glance, with T. sulphureum, which, however has spaced<br />

gills, a less <strong>in</strong>t<strong>en</strong>se yellow and unpleasant odour of coal<br />

gas. Known and valued as a choice edible up until a few<br />

years ago, they are today suspected of hav<strong>in</strong>g be<strong>en</strong><br />

<strong>in</strong>volved <strong>in</strong> several cases of poison<strong>in</strong>g (and ev<strong>en</strong> death)<br />

after abundant consumption and <strong>in</strong> undercooked meals;<br />

the episodes under <strong>in</strong>vestigation all occurred <strong>in</strong> a certa<strong>in</strong><br />

area <strong>in</strong> France and today we are await<strong>in</strong>g further<br />

verification. In any case, as a precautionary measure, and<br />

<strong>in</strong> the abs<strong>en</strong>ce of certa<strong>in</strong>ty, the gather<strong>in</strong>g and consumption<br />

of this species (and of all the <strong>en</strong>tities belong<strong>in</strong>g to its<br />

immediate group – Ed.) is forbidd<strong>en</strong> (by law) throughout<br />

the <strong>en</strong>tire Italian and Fr<strong>en</strong>ch territories.


CAP 60-150 mm, convex, campanulate, with large obtuse<br />

umbo, th<strong>en</strong> flat, grey-ochre-ish, dark grey, slate grey,<br />

sooty blackish, with gre<strong>en</strong>ish or violet sta<strong>in</strong>s on a yellow<br />

background just visible towards the c<strong>en</strong>tre, but stands out<br />

at the marg<strong>in</strong> which is oft<strong>en</strong> clearly grey- citr<strong>in</strong>a yellow,<br />

the cuticle is fibrillated radially, a little viscous and sh<strong>in</strong>y<br />

<strong>in</strong> humid weather, otherwise silky, the edges are slightly<br />

supple th<strong>en</strong> lobed, cracked, oft<strong>en</strong> revoluted with age.<br />

GILLS non-marg<strong>in</strong>ated, a little crowded, fairly wide,<br />

slightly thick, s<strong>in</strong>uate, white, th<strong>en</strong> ash grey with yellowish<br />

sta<strong>in</strong>s, the edge is irregular and sometimes serrated.<br />

STIPE 50-110 × 8-20 mm, robust, cyl<strong>in</strong>drical or fusiform,<br />

sat<strong>in</strong>-fibrillated, whitish, always with yellow sta<strong>in</strong>s<br />

especially towards the top, the apex is dandruff white and<br />

sta<strong>in</strong>s yellow-brownish-olive to the touch<br />

FLESH firm <strong>in</strong> cap and fibrous <strong>in</strong> stipe, white, a little<br />

yellowish <strong>in</strong> the stipe, fairly greyish below the cuticle of<br />

the cap with a pleasant floury odour and taste.<br />

Tricholoma port<strong>en</strong>tosum (Fr. : Fr.) Quélet<br />

MICROSCOPY: ellipsoidal, hyal<strong>in</strong>e spores, 5.5-7.0 × 4.0-<br />

5.0 µm. Clavate, tetrasporic basidia. Epicyte made from<br />

an ixocutis of fairly erect, parallel <strong>in</strong>terwov<strong>en</strong> hyphae.<br />

HABITAT: <strong>in</strong> conifer and hardwood areas, <strong>in</strong> autumn<br />

ev<strong>en</strong> late on.<br />

EDIBILITY: edible<br />

NOTE - Wh<strong>en</strong> the cap fades, leav<strong>in</strong>g just a glimpse of the<br />

yellowish-ochraceous colour, it can be confused with T.<br />

sejunctum, which, however, has a bitter, floury taste. Also<br />

T. virgatum has a fibrillated-virgated cap but its flavour<br />

and odour are quite unpleasant. One should pay att<strong>en</strong>tion<br />

to avoid tak<strong>in</strong>g it for the toxic T. josserandii, which has a<br />

dry, velvety cap, and a characteristic <strong>in</strong>sect-like odour.<br />

225


CAP 30-90 mm, campanulate, conical, flat, oft<strong>en</strong><br />

irregular, obtusely umbonate, matt cuticle, almost smooth<br />

or slightly woolly-felted at first, th<strong>en</strong> bear<strong>in</strong>g thick fibrils,<br />

almost uniform, smoke grey, dark brown or almost black<br />

<strong>in</strong> colour, the marg<strong>in</strong> is convoluted or curv<strong>in</strong>g for a long<br />

while, oft<strong>en</strong> with an overflow<strong>in</strong>g edge.<br />

GILLS non-marg<strong>in</strong>ated-adnate or hooked, slightly<br />

crowded, whitish or a little light grey<strong>in</strong>g, the surface<br />

lightly cr<strong>en</strong>ulated with age.<br />

STIPE 30-70 × 8-12 mm, cyl<strong>in</strong>drical, stocky, full and<br />

fibrous, fragile, hollow or a little fistular with age,<br />

smooth, silky, completely white or with light grey<strong>in</strong>g<br />

fibrils which dark<strong>en</strong> slightly <strong>in</strong> young specim<strong>en</strong>s.<br />

FLESH fibrous, fragile, white, greyish under the cuticle,<br />

with a light fungal odour, and a herby or light floury<br />

flavour .<br />

MICROSCOPY: spores mostly ellipsoidal, subglobulose,<br />

hyal<strong>in</strong>e, guttulate 6.0-7.5 × 4.5-5.5 µm. clavate,<br />

226<br />

Tricholoma terreum (Schaeff. : Fr.) Kummer<br />

tetrasporic basidia. Epicyte made from fairly erect,<br />

parallel <strong>in</strong>terwov<strong>en</strong>, hyphae.<br />

HABITAT: g<strong>en</strong>erally abundant <strong>in</strong> grow<strong>in</strong>g areas, found <strong>in</strong><br />

large groups; <strong>in</strong> conifer woods (p<strong>in</strong>e or fir), from the <strong>en</strong>d<br />

of summer until the first frosts.<br />

EDIBILITY: edible<br />

NOTE - This Terreum species iso ne of the most soughtafter<br />

<strong>mushrooms</strong> for human consumption and it is<br />

popularly known a “Moretta” (little brunette) <strong>in</strong> Italy. It is<br />

oft<strong>en</strong> confused with: T. myomyces which is smaller and<br />

more fragile with remnants of a silvery veil at the tip of<br />

its stipe and a floury odour; T. triste whose gill surface is<br />

darker and which has a stipe with brown-blackish shades;<br />

or else it is mixed up with grey-toned species of the<br />

scalpturatum and atrosquamosum groups, but which have<br />

almost no odour, non-wide, white or more or less grey<br />

gills, and whose stipe is whitish with no veil; <strong>in</strong> the field<br />

they can be told apart very easily.


CAP 50-120 mm, hemispheric, convex, th<strong>en</strong> a little flat,<br />

f<strong>in</strong>ally depressed, vivid red-brown, the cuticle is very<br />

viscous or glut<strong>in</strong>ous, <strong>in</strong> dry conditions it t<strong>en</strong>ds to sta<strong>in</strong> and<br />

discolour towards the marg<strong>in</strong> with shades of ochreorange,<br />

the marg<strong>in</strong> is convoluted at the extremes, with<br />

very evid<strong>en</strong>t ribs.<br />

GILLS hooked, s<strong>in</strong>uate-adnate, not very crowded, close,<br />

white, sta<strong>in</strong>ed reddish <strong>in</strong> adult specim<strong>en</strong>s, the surface is a<br />

little s<strong>in</strong>uous.<br />

STIPE 50-120 × 10-20 mm, cyl<strong>in</strong>drical or fairly clavate<br />

or fusiform full th<strong>en</strong> hollow, white dandruff at tip, sta<strong>in</strong>ed<br />

brown-reddish to from the annular l<strong>in</strong>e which is more<br />

evid<strong>en</strong>t <strong>in</strong> young specim<strong>en</strong>s, with fibrils coloured or oft<strong>en</strong><br />

lighter, a little viscous with humid weather.<br />

FLESH firm white, with strong smell of flour or<br />

cucumber and floury flavour.<br />

MICROSCOPY: spores subglobose, suboval hyal<strong>in</strong>e,<br />

guttulate 5.5-6.5 × 4.5-5.0 µm. clavate, tetrasporic<br />

Tricholoma ustaloides Romagnesi<br />

basidia. Epicyte made from an ixotrichoderma of fairly<br />

erect, <strong>in</strong>terwov<strong>en</strong>, parallel hyphae.<br />

HABITAT: under hardwood (oak, chestnut, beech,<br />

hornbeam), <strong>in</strong> autumn; fairly common.<br />

EDIBILITY: not edible<br />

NOTE - This species is characterised by a slimy cuticle<br />

that, on dry<strong>in</strong>g, t<strong>en</strong>ds to leave traces of mucus grouped<br />

around the edges. It is oft<strong>en</strong> confused with T. ustale,<br />

which, however has a smooth marg<strong>in</strong>, a stipe devoid of a<br />

delimited annulus zone and the flesh of the base of the<br />

stipe right up to the gill edge is a reddish-brown. It can<br />

also be confused with T. fracticum and T. striatum with<br />

smooth caps bear<strong>in</strong>g radial fibrils and which pr<strong>in</strong>cipally<br />

grow under mounta<strong>in</strong> conifers. T. ustaloides, however, it<br />

can easily be recognised <strong>in</strong> the field by its flavour and<br />

odour.<br />

227


CAP 30-140 mm, conical, hemispheric, th<strong>en</strong> flat, oft<strong>en</strong><br />

with obtuse umbo, v<strong>in</strong>ous red, p<strong>in</strong>k-red <strong>in</strong>t<strong>en</strong>se purple on<br />

a vivid yellow or gold<strong>en</strong> yellow background, the cuticle<br />

bear<strong>in</strong>g adpressed woolly decorations <strong>in</strong> the c<strong>en</strong>tre and<br />

small scales which are adpressed gradually and radially<br />

towards the edges, the marg<strong>in</strong> is convoluted for a long<br />

time.<br />

GILLS from non-marg<strong>in</strong>ated to mostly adnate, partly<br />

anastomosed, wide, moderately crowded, <strong>in</strong>t<strong>en</strong>se sulphur<br />

yellow or gold<strong>en</strong> yellow, the surface is f<strong>in</strong>ely floccose or<br />

fimbriated.<br />

STIPE 50-120 × 10-25 mm, cyl<strong>in</strong>drical or fusiform oft<strong>en</strong><br />

s<strong>in</strong>uous, full, hollow with age, concolour with cap or<br />

lighter, decorated with scales, more fleet<strong>in</strong>g towards the<br />

base which ev<strong>en</strong>tually becomes yellow, the apex is whiteyellowish.<br />

FLESH soft, thick <strong>in</strong> the c<strong>en</strong>tre, yellow-cream, with sour<br />

mould or light odour, like wood, and sweet light flavour,<br />

like hazelnut or a little bitter.<br />

228<br />

Tricholomopsis rutilans (Schaeffer : Fr.) S<strong>in</strong>ger<br />

MICROSCOPY: spores mostly ellipsoidal, hyal<strong>in</strong>e,<br />

guttulate 7.0-8.5 × 5.5-6.5 µm. clavate, tetrasporic<br />

basidia. Epicyte made from fairly erect, parallel,<br />

<strong>in</strong>terwov<strong>en</strong> hyphae.<br />

HABITAT: grows collated or <strong>in</strong> groups on rott<strong>in</strong>g parts of<br />

conifers especially fir and p<strong>in</strong>e.<br />

EDIBILITY: of no value<br />

NOTE - This is an unmistakeable species thanks to its<br />

lignicole habitat and its yellow gills which contrast with<br />

the w<strong>in</strong>e colour of its cap. T. decora can be found <strong>in</strong> the<br />

same habitat, but has a lighter cap which bears no w<strong>in</strong>ey<br />

tones and is g<strong>en</strong>erally more sl<strong>en</strong>der. T. flammula is a very<br />

small species, with a cap diameter that reaches only up<br />

until 15 mm, purplish-brown fibrillated scales and a<br />

yellow stipe; T. ornata has a yellow-olivish cap with<br />

fairly sparse, <strong>in</strong>t<strong>en</strong>se reddish-brown scales, a pale yellow<br />

stipe with fibrils, and grows on woody debris.


CAP 50-120 (150) mm, fleshy, from hemispheric to<br />

convex, pulv<strong>in</strong>ate, f<strong>in</strong>ally flat; edge very soon becom<strong>in</strong>g<br />

regularly dist<strong>en</strong>ded or a little undulated; cuticle is velvety<br />

wh<strong>en</strong> young, dry, sometimes dimpled; with very variable<br />

colourations, from pure yellow, to yellow with citr<strong>in</strong>a<br />

t<strong>in</strong>ges, to alutaceous brown with gre<strong>en</strong>ish h<strong>in</strong>ts, brown<br />

orange <strong>in</strong> dry weather, rusty brown, brown reddish, up to<br />

liver red <strong>in</strong> humid weather. Scratch<strong>in</strong>g the cuticle with the<br />

f<strong>in</strong>ger wh<strong>en</strong> it is <strong>in</strong> its dry state it is possible to observe a<br />

rusty Brown subcuticular layer.<br />

TUBES up to 15 mm, adnate and sometimes<br />

subdecurr<strong>en</strong>t, chrome yellow, th<strong>en</strong> with gre<strong>en</strong>ish h<strong>in</strong>ts,<br />

f<strong>in</strong>ally olivish, slowly turn<strong>in</strong>g blue at gill edge; pores are<br />

concolour with tubes, round, soon becom<strong>in</strong>g op<strong>en</strong>, th<strong>en</strong><br />

large and angular, turn<strong>in</strong>g blue to the touch.<br />

STIPE 50-80 (100) × 10-20 (25) mm, cyl<strong>in</strong>drical, curv<strong>in</strong>g<br />

at base, supple, almost always dilated at tip and att<strong>en</strong>uated<br />

at base; very pale yellow, t<strong>en</strong>d<strong>en</strong>cy to turn brown slowly<br />

dur<strong>in</strong>g maturity; f<strong>in</strong>e po<strong>in</strong>ts or l<strong>en</strong>gthwise ribs are oft<strong>en</strong><br />

found which form a sort of lattice.<br />

FLESH firm and compact, soon becom<strong>in</strong>g soft <strong>in</strong> cap and<br />

fibrous <strong>in</strong> stipe, pale chrome yellow, typically ochre at<br />

Xerocomus subtom<strong>en</strong>tosus (L. : Fr.) Quélet<br />

base of stipe, more evid<strong>en</strong>t <strong>in</strong> humid weather; slowly<br />

turns blue at gill edge; weak slightly acidic odour; sweet<br />

flavour.<br />

MICROSCOPY: ellipsoidal fusiform spores with superior<br />

depression, 10.6-13.2 × 4.3-5.0 µm, pale yellow under<br />

microscope, olive brown <strong>in</strong> mass.<br />

HABITAT: <strong>in</strong> relatively low numbers, fairly <strong>in</strong>differ<strong>en</strong>t to<br />

substrate, isolated or <strong>in</strong> small groups; recurr<strong>en</strong>tly<br />

associated with oak and chestnut; summer-autumn.<br />

EDIBILITY: edible<br />

NOTE - This is one of the most noted and common<br />

Xerocomus species. The chromatic variability of its cap is<br />

ma<strong>in</strong>ly due to climatic-<strong>en</strong>vironm<strong>en</strong>tal conditions:<br />

examples with a reddish-brown cap are common after it<br />

ra<strong>in</strong>s, ev<strong>en</strong> <strong>in</strong> the same places where one usually f<strong>in</strong>ds<br />

carpophores with olive-brown caps. The variants with<br />

yellow caps should probably be considered as <strong>in</strong>traspecial<br />

varieties. X. ferrug<strong>in</strong>eus is very similar, but<br />

prefers to grow on siliceous ground and, g<strong>en</strong>erally, at<br />

higher altitudes.<br />

229


230


European Commission<br />

EUR <strong>24415</strong> EN – Jo<strong>in</strong>t Research C<strong>en</strong>tre – Institute for Environm<strong>en</strong>t and Susta<strong>in</strong>ability<br />

Title: Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> Ascomycetes and Basidiomycetes – The refer<strong>en</strong>ce <strong>mushrooms</strong><br />

as an <strong>in</strong>strum<strong>en</strong>t for <strong>in</strong>vestigat<strong>in</strong>g bio<strong>in</strong>dication and biodiversity<br />

Authors: R. M. C<strong>en</strong>ci, L. Cocchi, O. Petr<strong>in</strong>i, F. S<strong>en</strong>a, C. S<strong>in</strong>iscalco, L. Vescovi<br />

Luxembourg: <strong>Publications</strong> Office of the European Union<br />

2011 – 232 pp. – 18 x 24 cm<br />

EUR – Sci<strong>en</strong>tific and Technical Research series – ISSN 1018-5593<br />

ISBN 978-92-79-20395-4<br />

doi:10.2788/22228<br />

Abstract<br />

Fungi <strong>in</strong> the wild are among the pr<strong>in</strong>cipal ag<strong>en</strong>ts <strong>in</strong> biogeochemical cycles; those cycles of<br />

matter and <strong>en</strong>ergy which <strong>en</strong>able ecosystems to work.<br />

By <strong>in</strong>vestigat<strong>in</strong>g the biodiversity of Italian fungal species and conc<strong>en</strong>tration levels of chemical<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> them, it may be possible to employ these fungi as biological <strong>in</strong>dicators for the<br />

quality of forest, woodland and semi-natural <strong>en</strong>vironm<strong>en</strong>ts. The data archives of EUR<br />

Reports record the dry-material conc<strong>en</strong>trations, of 35 chemical <strong>elem<strong>en</strong>ts</strong>, <strong>in</strong>clud<strong>in</strong>g heavy<br />

metals, <strong>in</strong> over 9000 samples of higher <strong>mushrooms</strong>. These samples repres<strong>en</strong>t around 200<br />

g<strong>en</strong>era and a thousand species. As the archive has atta<strong>in</strong>ed statistical stability it has be<strong>en</strong><br />

possible to def<strong>in</strong>e the concept of a “refer<strong>en</strong>ce mushroom”. The use of a “refer<strong>en</strong>ce<br />

mushroom” may br<strong>in</strong>g b<strong>en</strong>efits – perhaps only as a methodological approach – <strong>in</strong> various<br />

fields of mycological and <strong>en</strong>vironm<strong>en</strong>tal research; from biodiversity and bio<strong>in</strong>dication,<br />

through taxonomy right up to health and sanitation issues.<br />

The sheer volume of the collected data may prove to be useful as a comparison for data<br />

collected <strong>in</strong> the future; such results would also allow a better and more-exhaustive<br />

<strong>in</strong>terpretation of the effects of <strong>en</strong>vironm<strong>en</strong>tal-protection laws which have be<strong>en</strong> <strong>en</strong>acted over<br />

the years <strong>in</strong> order to reduce or remedy curr<strong>en</strong>t climate-change ph<strong>en</strong>om<strong>en</strong>a and the<br />

<strong>en</strong>vironm<strong>en</strong>tal damage caused by human activity. Studies perta<strong>in</strong><strong>in</strong>g to the frequ<strong>en</strong>cy of<br />

occurr<strong>en</strong>ce and the ecology of the various fungal species found on Italian soil have t<strong>en</strong>ded to<br />

l<strong>in</strong>k the refer<strong>en</strong>ce habitats used to European classification guidel<strong>in</strong>es (Natura 2000, CORINE<br />

Land Cover, CORINE Biotopes and EUNIS). Thereby the foundations have be<strong>en</strong> la<strong>in</strong> for the<br />

use of <strong>mushrooms</strong> as biological <strong>in</strong>dicators for the measurem<strong>en</strong>t of soil and ecosystem<br />

quality.<br />

How to obta<strong>in</strong> EU publications<br />

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu),<br />

where you can place an order with the sales ag<strong>en</strong>t of your choice.<br />

The <strong>Publications</strong> Office has to worldwide network of sales ag<strong>en</strong>ts. You can obta<strong>in</strong> their<br />

contact details by s<strong>en</strong>d<strong>in</strong>g to fax to (352) 29 29-42758.<br />

231


The mission of the <strong>JRC</strong> is to provide customer-driv<strong>en</strong> sci<strong>en</strong>tific and technical<br />

support for the conception, developm<strong>en</strong>t, implem<strong>en</strong>tation and monitor<strong>in</strong>g<br />

of EU policies. As to service of the European Commission, the <strong>JRC</strong> functions<br />

as to refer<strong>en</strong>ce c<strong>en</strong>tre of sci<strong>en</strong>ce and technology for the Union. Close to the<br />

policy-mak<strong>in</strong>g process, it serves the common <strong>in</strong>terest of the Member States,<br />

while be<strong>in</strong>g <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t of special <strong>in</strong>terests, whether private or national.<br />

232<br />

LB-NA-<strong>24415</strong>-EN-C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!