Skip to main content
Log in

Influence of Moisture Content and Compression Axis on Mechanical, Physical, and Phytochemicals Properties of Akuamma (Picralima nitida) Fruits and Seeds

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

This research studied the effect of the moisture content and the three orthogonal axes on the physical, mechanical, and the phytochemical properties of Picralima nitida fruits and the seeds. The results showed that the compression force, the compression shear strength, the deformation, and the Poisson’s ratio depend on the compression axis and the moisture content. Rupturing the fruit through the intermediate diameter showed higher strength than rupturing the fruit along the major and the minor diameter. The Poisson’s ratio ranged from 0.468 to 0.432 at the moisture content range of 75–88.3% wb. Phytochemical screening of the seed showed that saponins, tannins, and flavonoid were present in the seeds. Losing moisture was associated with the loss of the phytochemicals, but flavonoid showed a higher susceptibility to the moisture loss. The frequency distribution of the axial dimensions showed that 85% of the seed major diameters fell within the median class of 27.5 mm. The surface area of the fruits ranged from 409.88 to 987.12 cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.K. Nkere, C.U. Iroegbu, Antibacterial screening of the root, seed and stem bark extracts of Picralima nitida. Afr. J. Biotech. 4(6), 522–526 (2005)

    Google Scholar 

  2. S.I. Inya-Agha, S.C. Ezea, O.A. Odukoya, Evaluation of Picralima nitida: hypoglycemic activity, toxicity, and analytical standards. Int. J. Pharmacol. 2, 576–580 (2006)

    Article  Google Scholar 

  3. Mabeku Kouitcheu et al., Evaluation of the antidiarrhoeal activity of the fruit- rind of Picralima nitida (Apocynaceae). Afr. J. Tradit. Complement. 3, 66–73 (2006)

    Google Scholar 

  4. AKUAMMASEED.COM. Picralima nitida | Akuamma Whole Seed - 500 g. http://akuammaseeds.com/picralima-nitida-akuamma-powdered-seed-1oz/(akuammaseeds

  5. O.A. Olajide, R. Velagapudi, U.P. Okorji, S.D. Sarker, B. Fiebich, Picralima nitida seeds suppress PGE2 production by. J. Ethnopharmacol. (2014). https://doi.org/10.1016/j.jep.2014.01.027i

    Google Scholar 

  6. H. Shittu, A. Gray, L.Young Burman, Glucose uptake stimulatory effect of akuammicine from Picralima nitida (Apocynaceae). Phytochem. Lett. 3, 53–55 (2010)

    Article  Google Scholar 

  7. A. Fakeye, O.A. Itiola, A.O. George, H.A. Odelola, Antimicrobial property of Picralima nitida stem bark extract in cream formulations. Pharm. Biol. 42, 274–279 (2004)

    Article  Google Scholar 

  8. A.C. Igboasoiyi, E.E. Essien, O.A. Eseyin, G. Ubam, Screening of the seed of Picralima nitida for hypoglycemic activity. Pak. J. Biol. Sci. 10, 828–830 (2007)

    Article  Google Scholar 

  9. O.J. Mathew, A.M. Ogochukwu, U. Michael, Antiulcer activity of methanolic extract and fractions of Picralima nitida seeds (Apocynaceae) in rats. Asia-Pac.J. Trop. Med. 4, 13–15 (2011)

    Article  Google Scholar 

  10. A. Yessoufou, J. Gbenou, O. Grissa, A. Hichami, A.M. Simonin, Z. Tabka, M. Moudachirou, K. Moutairou, A. Yokosuka, M. Jitsuno, S. Yui, M. Yamazaki, Y. Mimaki, Steroidal glycosides from Agave utahensis and their cytotoxic activity. J. Nat. Prod. 72, 1399–1404 (2009)

    Article  Google Scholar 

  11. O. Erharuyi, A. Falodun, P. Langer, Medicinal uses, phytochemistry, and pharmacology of Picralima nitida (Apocynaceae) in tropical diseases: a review. Asian Pac. J. Trop. Med. 7, 1–8 (2014)

    Article  Google Scholar 

  12. O. Robertr, A.F. Thomas, The Alkaloids of Picralima nitida, Stapf, Th. and H. Dumnd. Part I. The Structure of Akuarnmigine (Dyson Perrin’s laboratory, Oxford University, Oxford, 1954)

    Google Scholar 

  13. M. Duwiejua, E. Woode, D.D. Obiri, Pseudo-akuammigine, an alkaloid from Picralima nitida seeds has anti-inflammatory and analgesic actions in rats. J. Ethnopharmacol. 8, 73–79 (2002)

    Article  Google Scholar 

  14. J.C. Cunningham, All nature and homeopathic lifestyle. (2017). www.jc-cunningham.com/product-page/1-ounce-akuamma-seeds-picralima-nitida-rare-painkiller-muscle

  15. J.E. Okokon, B.S. Antia, A.C. Igboasoiyi, E.E. Essien, H.O.C. Mbagwu, Evaluation of the antiplasmodial activity of ethanolic seed extract of Picralima nitida. J. Ethnopharmacol. 111(2007), 464–467 (2007)

    Article  Google Scholar 

  16. L.B.K. Mabeku, J. Kouam, A. Paul, F.X. Etoa, Phytochemical screening and toxicological profile of methanolic extract of Picralima nitida fruit rind (Apocynaceae). Toxicol. Environ. Chem. 90, 815–828 (2008)

    Article  Google Scholar 

  17. Z. Li, F. Miao, J. Andrews, Mechanical models of compression and impact on fresh fruits. Compr. Rev. Food Sci. Food Saf. 16, 1296–1312 (2017)

    Article  Google Scholar 

  18. H.S. Ai-Katary, H.A.A. Ei-Mawla, M.A. Osman, A.M. Ahmed, Washing water turbidity as an indicator to fruit and vegetable washer efficiency. Misr J. Agric. Eng. 27, 662–675 (2010)

    Google Scholar 

  19. Z. Li, P. Li, H. Yang, J. Liu, Y. Xu, Mechanical properties of tomato exocarp, mesocarp, and locular gel tissues. J. Food Eng. 111, 82–91 (2012)

    Article  Google Scholar 

  20. C. Gonzalez-Montellano, E.M. Baguena, A. Ramirez-Gomez, P. Barreiro, Discrete element analysis for the assessment of the accuracy of load cell-based dynamic weighing systems in grape harvesters under different ground conditions. Comput. Electron. Agric. 100, 13–23 (2014)

    Article  Google Scholar 

  21. M.C. Ndukwu, Determination of selected physical properties of Brchystegia Eurycoma Seeds. Res. Agric. Eng. 55, 1–7 (2009)

    Article  Google Scholar 

  22. M.C. Ndukwu, L.A. Ozoude, Relationships between selected mechanical and physical properties of Mucuna flagellipes (Ukpo) and moisture content. J. Appl. Agric. Res. 1, 35 (2009)

    Google Scholar 

  23. E. Altuntas, M. Erkol, The effects of moisture content, compression speeds and axes on mechanical properties of walnut cultivars. Food Bioprocess Technol. (2010). https://doi.org/10.1007/s11947-009-0283-y

    Google Scholar 

  24. M.C. Ndukwu, Physical properties of Artocarpus altilis (Fosberg or Parkinson) seed relevant for the design of planting and processing equipment. Niger Agric. J. 42, 167–173 (2011)

    Google Scholar 

  25. S.I. Manuwa, H.A. Muhammad, Effects of moisture content and compression axis on mechanical properties of Shea kernel. J. Food Eng. 105, 144–148 (2011)

    Article  Google Scholar 

  26. L.A. Ramallo, R.H. Mascheroni, Quality evaluation of pineapple fruit during the drying process. Food Bioprod. Process. 90, 275–283 (2012)

    Article  Google Scholar 

  27. Z. Li, P. Li, H. Yang, Y. Wang, Stability tests of two-finger tomato grasping for harvesting robots. Biosyst. Eng. 116, 163–170 (2013)

    Article  Google Scholar 

  28. M.C. Ndukwu, Moisture-dependent physical properties of African oil bean seed. Agric. For. 59, 193–202 (2013)

    Google Scholar 

  29. A.A. Bhosale, K.K. Sundaram, Nondestructive method for ripening prediction of papaya. Procedia Technol. 19, 623–630 (2015)

    Article  Google Scholar 

  30. M.C. Ndukwu, C. Ejirika, Physical properties of the African walnut (Tetracarpidium conophorum) from Nigeria. Cogent Food Agric. 2, 1232849 (2016). https://doi.org/10.1080/23311932.2016.1232849

    Google Scholar 

  31. M.C. Ndukwu, M. Udofia, Kinetics of change in colour and some biochemical composition during fermentation of cocoa bean. Cogent Food Agric. 2, 1268743 (2016). https://doi.org/10.1080/23311932.2016.1268743

    Google Scholar 

  32. M.C. Ndukwu, L. Bennamoun, O. Anozie, Evolution of thermo-physical properties of Akuama (Picralima nitida) seed and antioxidants retention capacity during hot air drying. Heat Mass Transf. 54, 3533–3546 (2018)

    Article  Google Scholar 

  33. S.N. Jha, D.R. Rai, R. Shrama, Physico-chemical quality parameters and overall quality index of apple during storage. Food Sci. Technol. 49(5), 594–600 (2012). https://doi.org/10.1007/s13197-011-0415-z

    Google Scholar 

  34. S.N. Jha, Physical and thermal properties of gorgon nut. J. Food Process Eng. 16, 237–245 (1993)

    Article  Google Scholar 

  35. S.N. Jha, R.P. Kachru, Physical and aerodynamic properties of makhana. J. Food Process Eng. 21, 301–316 (1998)

    Article  Google Scholar 

  36. E. Milani, M. Seyed, A. Razavi, A. Koocheki, V. Nikzadeh, N. Vahedi, M. MoeinFard, A. GholamhosseinPour, Moisture-dependent physical properties of cucurbit seeds. Int. Agrophys. 21, 157 (2007)

    Google Scholar 

  37. K.M. Jahromi, S. Rafiee, A. Jafari, M.R. Ghasemi Bousejin, R. Mirasheh, S.S. Mohtasebi, Some physical properties of date fruit (cv. Dairy). Int. Agrophys. 22, 221–224 (2008)

    Google Scholar 

  38. A.K. Dash, R.C. Pradhan, L.M. Das, S.N. Naik, Some physical properties of Simarouba fruit and kernel. Int. Agrophys. 22, 111–116 (2008)

    Google Scholar 

  39. P.S. Madamba, R.H. Driscoll, K.A. Buckle, Shrinkage, density and porosity of garlic during drying. J. Food Eng. 23, 309–319 (1994)

    Article  Google Scholar 

  40. C.F. Mora, A.K.H. Kwan, Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cem. Concr. Res. 30, 351–358 (2000)

    Article  Google Scholar 

  41. H. Ebrahimzadeh, A.H. Mirzabe, M. Lotfi, S. Azizinia, Gamma irradiation effects on physical properties of squash seeds. Agric. Eng. Int. CIGR J. 15, 131–138 (2013)

    Google Scholar 

  42. N.N. Mohsenin, Physical Properties of Plant and Animals Materials (Gordon and Breach Science Publishers, New York, 1986)

    Google Scholar 

  43. J.T. Garry, Surface Area of Ellipsoid Segment (Department of Mathematics, University of Auckland, Auckland, 2005)

    Google Scholar 

  44. J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  45. S.R. Keller, On the surface area of the ellipsoid. Math. Comput. 33, 310–314 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  46. G. Sitkei, Mechanics of Agricultural Materials (Elsevier, Budapest, 1986)

    Google Scholar 

  47. S.N. Jha, R.P. Kachru, Physical and aerodynamic properties of makhana. J. Food Process Eng. 21, 301–316 (1998)

    Article  Google Scholar 

  48. G. Trease, S.M. Evans, Pharmacognosy (Bailer-Tindal, London, 2002)

    Google Scholar 

  49. N. Giuseppina, R. Tabach, Saponins, tannins, and flavonols found in the hydroethanolic extract from Periandra dulcis roots. Rev. Bras. Farmacogn. 23, 851–860 (2013)

    Article  Google Scholar 

  50. E. Altuntas, M. Erkol, Physical properties of shelled and kernel walnuts as affected by the moisture content. Czech J. Food Sci. 28, 547–556 (2010)

    Article  Google Scholar 

  51. M.S. Teotia, P. Ramakrishna, Densities of melon seeds, kernels and hulls. J. Food Eng. 9, l-236 (1989)

    Google Scholar 

  52. Z. Li, C. Thomas, Multi-scale biomechanics of tomato fruits: a review. Crit. Rev. Food Sci. 56, 1222–1230 (2016)

    Article  Google Scholar 

  53. E. Altuntas, B. Ozturk, The effect of aminoethoxyvinylglycine (AVG) treatments on mechanical properties of plum (cv. President). J. Food Process Eng. 36, 619–625 (2013)

    Google Scholar 

  54. C.C. Ihueze, C.E. Mgbemena, Design for limit stresses of orange fruits (Citrus sinensis) under axial and radial compression as related to transportation and storage design. J. Saudi Soc. Agric. Sci. 16, 72–81 (2017)

    Google Scholar 

  55. W. Burubai, E. Amula, R.M. Davies, G.W.W. Etekpe, S.P. Daworiye, Determination of Poisson’s ratio and elastic modulus of African nutmeg (Monodora myristica). Int. Agrophys. 22, 99–102 (2008)

    Google Scholar 

  56. G.S. Kim, H.T. Kim, J.D. Seong, Cytotoxic steroidal saponins from the rhizomes of Asparagus oligoclonal. J. Nat. Prod. 2005(68), 766–768 (2005)

    Article  Google Scholar 

  57. L.B. Zhou, T.H. Chen, K.F. Bastow, Filiasparosides A-D, cytotoxic steroidal saponins from the roots of Asparagus filicinus. J. Nat. Prod. 70, 1263–1267 (2007)

    Article  Google Scholar 

  58. L. Mskhiladze, J. Legault, S. Lavoie, Cytotoxic steroidal saponins from the flowers of Allium leucanthum. Mol. (Basel, Switzerland) 13, 2925–2934 (2008)

    Article  Google Scholar 

  59. C. Gauthier, J. Legault, M. Piochon-Gauthier, A. Pichette, Advances in the synthesis and pharmacological activity of lupane-type triterpenoid saponins. Phytochem. Rev. 10, 521–544 (2011)

    Article  Google Scholar 

  60. S. Megalli, N.M. Davies, B.D. Roufogalis, Antihyperlipidemic and hypoglycemic effects of Gynostemma pentaphyllum in the Zucker fatty rat. J. Pharm. Pharm. Sci. 9, 281–291 (2006)

    Google Scholar 

  61. O. Tanaka, Y. Tamura, H. Masuda, K. Mizutani, Application of saponins in foods and cosmetics: saponins of Mohave Yucca and Sapindus mukurossi, in Saponins Used in Food and Agriculture. Advances in Experimental Medicine and Biology, ed. by G.R. Waller, K. Yamasaki (Springer, Boston, 1996)

    Google Scholar 

  62. K. Ramakrishnan, M.R.V. Krishnan, Tannin—classification, analysis, and applications. Anc. Sci. Life 1, 232–238 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Ndukwu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndukwu, M.C., Ohia, A. & Anozie, O. Influence of Moisture Content and Compression Axis on Mechanical, Physical, and Phytochemicals Properties of Akuamma (Picralima nitida) Fruits and Seeds. J. Inst. Eng. India Ser. A 100, 417–426 (2019). https://doi.org/10.1007/s40030-019-00375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-019-00375-x

Keywords

Navigation